轻量级多模态多语言Gemma 3模型:为性能而优化
在构建基于基础模型的AI系统时,开发者需要在内存、延迟、存储、计算等资源之间取得微妙的平衡。对于管理成本和用户体验的开发者来说,没有一种通用的解决方案适合所有情况,尤其是在将生成式AI能力引入快速增长的AI驱动应用生态系统时。
开发者需要高质量、可定制的模型选项,这些模型能够支持在不同计算环境中部署和托管的大规模服务,从数据中心到边缘计算再到设备端应用场景。
Google DeepMind刚刚宣布推出Gemma 3,这是一系列新的多模态和多语言开源模型。Gemma 3包括一个1B纯文本小型语言模型(SLM)和三种规模为4B、12B和27B的图像-文本模型。您可以从HuggingFace获取这些模型,也可以在NVIDIA API目录中体验1B模型。
Gemma 3 1B模型经过优化,可以在设备应用或需要低内存使用的环境中高效运行,支持最多32K tokens的输入。Gemma 3 4B、12B和27B模型则接受文本、图像和多图像输入,支持最多128K tokens。
使用优化的Gemma 3模型进行实验和原型设计
您可以在NVIDIA API目录中探索这个模型,在那里您可以使用自己的数据进行实验,并配置最大tokens数和温度、top P等采样值参数。
预览还会生成您在Python、NodeJS和Bash中需要的代码,以便将模型集成到您的程序或工作流中。如果您使用LangChain构建代理、连接外部数据或链接操作,您可以使用NVIDIA LangChain库生成的可重用客户端。
图1. Gemma 3模型演示
要在您自己的环境中开始使用,请按照以下步骤操作:
- 在NVIDIA API目录创建一个免费账户
- 导航到Gemma 3模型卡片
- 选择"Build with this NIM"并"Generate API Key"
- 将生成的密钥保存为
NVIDIA_API_KEY
面向下一代机器人和边缘解决方案的高级AI
每个Gemma 3模型都可以部署到NVIDIA Jetson系列嵌入式计算板上,这些计算板用于机器人和边缘AI应用。较小的变体,如1B和4B,可以在像Jetson Nano这样小的设备上使用。而为高需求应用构建的27B模型可以在Jetson AGX Orin上提供服务,该设备支持高达275 TOPS的算力。有关更多信息,请参阅最新的Jetson Orin Nano开发者套件公告。
NVIDIA与Google的持续合作
Google DeepMind和NVIDIA在Gemma的每个版本上都有合作。NVIDIA在为GPU优化模型、为JAX(Python机器学习库)、Google的XLA编译器、OpenXLA等做出贡献方面发挥了关键作用。
推进社区模型和协作
NVIDIA是开源生态系统的积极贡献者,已经以开源许可发布了数百个项目。
NVIDIA致力于支持像Gemma这样的开源模型,这些模型促进了AI透明度,让用户能够广泛分享AI安全和韧性方面的工作。使用NVIDIA NeMo平台,这些开源模型可以在专有数据上进行定制和调优,用于各行业的AI工作流程。
立即开始使用
带上您的数据,在NVIDIA加速平台上试用Gemma模型,访问NVIDIA API目录中的Gemma模型即可开始体验。
关于Gemma 3模型的更多思考
Gemma 3模型系列的推出代表了AI领域的一个重要进展,特别是在轻量级多模态模型方面。这些模型的设计理念反映了当前AI发展的趋势:在保持强大功能的同时,追求更高的效率和更广泛的适用性。
1B文本模型的优化使其能够在资源受限的环境中运行,这对于移动设备、IoT设备和边缘计算场景尤为重要。同时,4B到27B的多模态模型则提供了从入门级到高性能应用的全面覆盖,满足不同规模和复杂度的AI应用需求。
特别值得注意的是,这些模型支持多语言功能,这意味着它们可以在全球范围内的各种语言环境中发挥作用,大大扩展了其应用场景。结合多模态能力,Gemma 3模型能够理解和处理文本与图像的组合输入,为更自然、更丰富的人机交互创造了可能。
在NVIDIA平台上的优化使这些模型能够充分利用GPU加速,进一步提升性能。对于开发者来说,NVIDIA提供的工具和API简化了模型的使用和集成过程,降低了采用先进AI技术的门槛。
Gemma 3模型在Jetson设备上的部署能力,则为机器人、自动驾驶、智能监控等边缘AI应用提供了强大支持。从小型的Jetson Nano到高性能的Jetson AGX Orin,不同规模的模型可以根据具体需求和硬件条件灵活部署。
NVIDIA与Google DeepMind的合作也展示了开源协作在推动AI技术进步中的重要性。通过共同努力优化模型、改进工具和框架,两家公司为整个AI社区创造了更大的价值。
总的来说,Gemma 3模型系列为开发者提供了一套强大而灵活的工具,可以应用于从云端到边缘的各种场景。随着这些模型的广泛应用和进一步优化,我们可以期待看到更多创新的AI应用出现在各个领域。