2025 人工智能技术发展趋势剖析

人工智能领域更是呈现出多维度的蓬勃发展态势,一系列关键趋势正引领着技术的变革与突破,深度渗透到各个行业和生活的方方面面,为人类社会带来前所未有的机遇与挑战。看完智源研究院发布的2025 十大AI发展趋势,梳理如下,供大家参考。文末获取原文pdf

一、AI4S:科学研究范式的深度变革

2024 年度诺贝尔物理学奖、化学奖花落 AI 领域科学家,这一标志性事件彰显了 AI4S(AI for Science)在科学研究领域的关键地位。自人类开展科学研究以来,历经经验观察、理论建构、仿真模拟、数据驱动的科学发现等阶段,而大模型时代的 AI4S 带来了全新的赋能模式。传统人工智能在科研中多聚焦特定任务优化,模型规模与泛化能力有限。如今的大模型凭借海量数据训练,整合跨领域知识,其架构支持多层次学习与复杂结构捕捉,能对科学问题进行全局分析并提出创新性假设。

在化学领域,俄亥俄州立大学的 LlaSMol 大模型在化学任务中成绩优异,其配套数据集 SMollnstruct 为后续研究奠定基础;DeepMind 和 Isomorphic Labs 的 AlphaFold 3 精准预测蛋白质相互作用,大幅拓展应用范围。国内中国气象局的气象大模型系统“风清”“风顺”“风雷”实现高效计算与物理可解释性的气象预测;北京智源人工智能研究院的 BAAIWorm 天宝为神经机制研究提供平台,OpenComplex 平台致力于构建生物过程模拟系统。

2025 年,多态大模型将进一步融入科学研究赋能多维数据的复杂结构挖掘,辅助科研问题的综合理解与全局分析,推动从基础理论到应用实践的全方位创新,为生物医学、气象、材料发现、生命模拟、能源等基础与应用科学的研究开辟新方向。

二、具身智能:大小脑与本体的协同进化之旅

2024 年,具身智能在全球范围内掀起竞争热潮,中美处于领先地位。在国内,截至年底已发布或在研近百家人形机器人,融资超百亿。行业格局中,具身智能创业和资本热度从本体向具身大小脑转移,专注本体、具身脑、本体与脑并重的三类厂商主导行业发展。本体领域在细分方向如灵巧手、触觉传感器、感知芯片等有望创新。

具身大模型,目前已形成两条主流技术路线:端到端模型和分层决策模型。分层模型方面,LLM、VLM 等已成为具身大脑的主流范式,而小脑侧仍以传统控制方法为主。端到端模型,作为近两年的研究热点,覆盖感知-决策-控制全流程,理论上可获取的信息量最为丰富,端到端的输出效果最优。就模型赋能效果来看,具身大模型已在感知决策端实现了较好的多任务迁移和处理,但控制执行侧的泛化仍需要技术路径的持续迭代和模型规模的Scaling up,这或可成为 2025年的突破方向。

海外科技巨头成果丰硕,Google 与 DeepMind 的 RT 系列模型不断进化,RT-1 开启机器人领域 Transformer 应用先河,RT-2 实现端到端视觉语言动作整合,RT-X 提升通用性;斯坦福大学的 VoxPoser 及 Physical Intelligence 公司的通用机器人基础模型也各有突破。国内企业积极探索,银河通用、星海图、北京智源研究院等在模型应用与技术研发上持续发力。2025 年的具身智能,将继续从本体扩展到具身脑的叙事主线,可以重点关注三个方向。一是在行业格局上,近百家的具身初创或将迎来洗牌,厂商数量开始收敛;二是在技术路线上,端到端模型继续迭代,小脑大模型的尝试或有突破;三是在商业变现上,我们也必将看到更多的工业场景下的具身智能应用,部分人形机器人迎来量产。

人工智能的下一个浪潮将是具身智能,即能理解、推理、并与物理世界互动的智能系统。

---黄仁勋

三、统一多模态大模型:迈向更高效 AI 的核心驱动力

从 2023 年起,大模型虽热度高涨,但 LLM 模态单一限制了其向真实世界拓展。人类思维的多模态、跨模态特性促使原生多模态技术成为发展关键。多态技术的发展趋势在于整合不同类型的模态信息,传统多模态构建路线如 Diffusion Transformer 和 LLM+CLIP 存在信息损失与模态孤立问题,而原生多模态大模型从训练之初整合多模态数据,实现端到端输入输出,成为必然趋势。

2024 年,海外头部厂商率先布局。OpenAI 的 GPT-4o 采用统一神经网络处理多模态数据,显著提升融合能力;Meta 的 Chameleon 以大规模混合模态数据训练,性能优异;Google 的 Gemini2.0 和 OpenAI 的 o1 正式版在多模态功能与复杂问题解决上表现突出。国内北京智源人工智能研究院的 Emu3-8B 填补本土自研空白。2025 年,随着技术演进,统一多模态大模型将更精准模拟人类思维,在智能客服、智能创作、虚拟现实等领域实现更自然流畅的交互与更强大的任务处理能力,推动 AI 应用体验的变革。

四、Scaling Law 扩展:模型泛化的新阶段探索

Scaling Law作为大模型领域的“第一性原理”,强调模型性能与模型参数量、数据量和计算量的正相关关系,在 GPT-4、Claude 3.5 等基础模型训练中发挥了不可或缺的指引作用。但 2024 年末,单纯依靠扩大参数量和数据量提升模型性能的速度放缓。尽管预训练 Scaling Law 仍在发挥作用,且头部厂商持续投入超大规模集群建设,但提升门槛渐高。OpenAI 01 的发布成为转折点,大模型训练的共识逐渐从“资源获取"转向“资源分配”算力和数据从预训练向包括微调、对齐在内的后训练以及推理阶段倾斜,强化学习在其中的关键作用愈发凸显。

在这一趋势下,国内外企业积极探索。比如,OpenAl发布的 o1和 o3 正是通过利用强化学习在训练和推理时的规模定律,提高找到最佳推理路径的可能性和效果。在该趋势的推动下国内如 Moonshot 将强化学习技术应用于搜索场景,并发布以逻辑思考和深度推理为核心功能的数学模型 K0-Math;Deepseek使用强化学习训练,充分挖掘和激活模型潜,发布Deepseek R1模型,探索释放长思维链潜力;蚂蚁技术研究院设立了强化学习实验室,也围绕该方向展开探索。

2025 年,Scaling Law 将贯穿模型训练全流程,强化学习技术创新将助力发现各阶段的优化规律,提升模型在特定行业的适应性与精准度,如医疗影像诊断、金融风险预测等领域,加速 AI 技术从通用能力向专业领域的深度赋能。

即使在pre-training(预训练)中有放缓趋势,但GPT-01的发布,让我们看到另外一个天地,就是相对于预训练模型的'快思考’模式,推理模型01可以给更多的思考时间,ScalingLaw的推理性能已出现'拐点’,有一个指数级增长。

----张宏江

五、世界模型:开启 AI 认知新维度

通过构建对外部世界的模拟,AI系统能够完成对世界的内部表征,在复杂多变的环境中实现更为精准的决策与预测。作为赋予 AI 更高级别的认知、适应和决策能力的技术,世界模型不仅能推动 AI 在自动驾驶、机器人控制及智能制造等前沿领域的深度应用,更有望突破传统的任务边界,探索人机交互的新可能。当前其范式演变尚处早期,Sora、Genie 等模型展现出常识潜力,JEPA 实现信息高度抽象,多模态大模型与空间智能交汇激发创新灵感,但路线之争仍在持续。

2024 年,国外成果不断涌现。Google 的 Genie2 能从单张照片或文字生成 3D 环境;World Labs 的 AI 系统支持 3D 世界交互;Meta 的 NWM 实现图像到视频的导航预测;纽约大学等联合团队挖掘多模态大模型空间推理能力。国内北京智源研究院的 Emu3 和 See3D 分别在多模态统一理解与 3D 结构推理上取得突破。2025 年,随着技术路线的逐渐清晰与性能优化,世界模型将推动 AI 从感知智能迈向认知智能,在城市规划、虚拟设计、智能交通管理等复杂场景中实现更智能的决策与高效的资源调配。

空间智能是视觉智能的未来方向,解决空间智能问题将是迈向全面智能的基础性和关键性一步。3D空间智能将改变生活,在2025年,空间智能的界限很可能会再次突破。

---李飞飞

六、合成数据:大模型发展的关键催化剂

高质量数据短缺成为大模型进阶瓶颈,合成数据因此成为基础模型厂商的重要选择。据 Epoch AI 报告,互联网高质量数据将在 2026 年耗尽,真实世界数据集也将在 2030 - 2060 年间枯竭。合成数据在训练中可降低成本、提升多样性、避免隐私问题,在产业化过程中缓解数据垄断与获取难题,有力促进应用落地。

2024 年,微软的 Phi-4 凭借大量合成数据训练取得优异性能;OpenAI 、Anthropic 均利用合成数据检测模型推理、用于内部模型训练;智源研究院的数据集及清华、智谱 AI 团队的语音合成数据应用均取得良好效果。2025 年,合成数据占比将持续攀升,成为推动大模型性能迭代与广泛应用的核心力量,加速 AI 技术在医疗保健、金融服务、教育培训等数据敏感或稀缺领域的创新应用,如远程医疗诊断辅助、智能投顾、个性化学习等场景。

正如我们所知的那样,预训练毫无疑问将会终结,与此同时我们也不会再有更多数据了。原因在于,我们只有一个互联网,训练模型需要的海量数据即将枯竭,唯有从现有数据中寻找新的突破,AI才会继续发展。以后的突破点,就在于智能体、合成数据和推理时计算。

---llya Sutskever

七、推理优化迭代:AI 应用落地的核心支撑

随着大模型生成任务表现卓越,应用范围不断拓展至各类端侧设备,但资源受限带来推理开销挑战,促使推理优化成为产研重点。该领域涵盖算法加速与硬件优化两大方向,算法层面通过多维度优化降低计算、访存与存储开销,硬件层面针对模型推理特性设计芯片方案。

在机器学习推理领域,降低成本和延迟是一个核心关注点。Meta与麻省理工团队通过对模型层的智能化裁剪,在去除多达一半的模型层数下,依然维持了问答基准测试性能;微软推出的BitNet架构使用“BitLin-ear"层替代标准线性层,通过降低参数精度的方式,在性能具备竞争力的前提下,显著节省内存消耗。无问芯穹发布的FlashDecoding++通过对注意力和线性算子的针对性优化和计算图层面的深度算子融合技术,大幅提高大语言模型推理效率;潞晨科技推出的Colossal-Inference推理引擎通过张量并行、分块式KV缓存、KV缓存量化、分页注意力算法等优化技术实现推理速度的提升和计算资源的有效利用。硬件加速方面,Cerebras设计的Wafer-Scale Engine(WSE)将计算单元和内存单元高度集成,其第三代WSE相比英伟达H100可获得获得数千倍的带宽速度提升。

2025 年,推理优化技术将持续创新,在保障性能前提下进一步降低成本,实现大模型在更多低资源设备上的高效部署,推动智能语音助手、智能穿戴设备、智能家居等 AI 应用的普及与升级,提升用户体验。

八、Agentic AI:重塑产品应用生态

2025 年,更通用、自主的 Agentic AI 智能体成为产品应用关键形态,深入工作生活各场景。行业发展中,头部厂商积极布局,企业员工广泛使用 AI 工具处理任务,从 Chatbot、copilot 到 Al Agent、Agentic Al2023年以来行业对于A应用形态的理解越发深,推动行业从概念探讨向实际应用落地转变。

在理论发展方面,2023年12月,OpenAl提出了在有限直接监督下,长时间自主行动以实现计划目标的系统,“Agentic Al Systems”,并提出了评估该系统“Agenticness”程度的四个指标;随后吴恩达在人工智能峰会(A上进一步阐释了“Agentic”是对智能体智能程度的描述,进一步提出“Agentic workflow”是构建适应性更强智能体的重要方法,健全了构建智能体的理论体系。

在技术发展方面,2024年10月,Anthropic发布能够解读计算机屏幕信息、自主操作软件和实时浏览互联网的 Computer Use,同时发布帮助大模型系统快速接入多种外部数据资源的上下文协议MCP。智谱 AI推出可以执行超50步复杂操作,且支持跨应用执行任务的 AutoGLM 升级版,以及可操作桌面和自主处理文档、浏览网页的智能体GLM-PC,国内外头部模型厂商均在加速构建更通用、更自主智能体。

2025 年,Agentic AI 将实现更多智能化功能集成,深度融入企业业务流程与个人生活服务,如智能办公自动化、智能家庭管理、智能健康监测等领域,提升生产效率与生活便利性,引领 AI 应用从工具型向智能助手型转变。

LLM正在从主要优化消费级问答体验,转向优化支持智能体工作流(如工具使用、计算机操作、多智能体协作等),这将大幅提升智能体的工作性能!

---吴恩达

九、AI 应用:超级应用的崛起前夜

生成式模型在图像、视频侧的处理能力得到大幅提升,叠加推理优化带来的降本,Agent/RAG 框架、应用编排工具等技术的持续发展,为 AI 超级应用的落地奠定基础。大模型应用从功能点升级,渗透到 AI原生的应用构建及 AI OS 的生态重塑。

虽 C 端应用尚未爆发,但终端设备厂商与模型应用厂商已积极行动,苹果的 Apple Inteligence 重构手机 AIOS 生态,AI APP 方面 ChatGPT、豆包等在不同领域积累大量用户。2025 年,AI 应用热度将持续升温,超级应用竞争加剧,可能融合多领域功能,如智能出行、在线教育、数字娱乐等,实现一站式服务体验,重塑互联网应用格局,成为人们生活与工作的核心平台,激发新的经济增长点与社会服务模式创新。

十、AI 安全治理:保障技术健康发展

大模型 Scaling 带来的涌现特性与自主决策进步引发安全担忧,如不可预测风险、信息安全问题等,社会关注度持续攀升。各国及组织积极投入,探索技术监管与伦理规范,构建安全治理体系。

2024 年,OpenAI、Google、Anthropic 等国际厂商纷纷推出安全措施与框架;国内蚂蚁集团牵头制定标准并研发解决方案,华为、北京智源研究院等也在技术研究与国际合作方面积极作为。2025 年,AI 安全治理体系将进一步完善,安全技术与监管机制协同发展,确保 AI 技术在合法、合规、可靠、可控的轨道上持续创新,维护社会公平、隐私保护与公共安全,促进 AI 与人类社会和谐共生。

2025 年的人工智能领域正处于关键的变革节点,各趋势相互交织、相互促进,在推动技术进步的同时,也需全球各方携手应对挑战,确保 AI 造福人类社会的长远愿景得以实现。从基础研究到应用落地,从技术创新到安全保障,AI 正在全方位重塑世界,我们正见证这一伟大科技变革的历史进程,期待其为人类创造更加智能、美好的未来。

总结

在 2025 年人工智能的众多发展趋势中,个人觉得具身智能、统一多模态大模型、Agentic AI三个方向最有可能取得显著突破:

具身智能

一是技术路线的持续迭代,端到端模型不断优化,小脑大模型的尝试有望取得突破,这将进一步提升具身智能的感知、决策和控制能力,使其更接近人类智能行为。二是行业格局的优化,具身初创企业将迎来洗牌,厂商数量收敛,资源集中将有利于优势企业加大研发投入,推动技术快速发展。三是商业应用的拓展,工业场景下的具身智能应用将增加,部分人形机器人迎来量产,为技术提供了更广阔的应用空间和实践机会。四是感知能力的增强,3D视觉和触觉感知能力的提升,使机器人能更全面获取环境和物体信息,为自主学习和决策提供更丰富数据支持。

统一多模态大模型

一是模拟人类思维的需要,人类信息交互和处理是多模态、跨模态的,从训练之初就打通多模态数据,实现端到端输入和输出的原生多模态技术路线,能更真实地模拟人类思维过程,为多模态大模型发展提供新方向。二是科学研究的推动,2025年多模态大模型将融入科学研究,赋能多维数据复杂结构挖掘,辅助科研问题综合理解与全局分析,为生物医学、气象等基础与应用科学研究开辟新方向,促使科研人员加大研发投入。三是产业链协同效应,随着产业链上下游合作日益紧密,完整的生态系统逐步形成,加强供应链各环节协同效应,促进技术成果向实际生产力有效转化。四是算法与硬件的优化,算法加速和硬件优化技术持续迭代,使大模型在资源受限设备上更高效运行,降低部署成本,提高用户体验,为统一多模态大模型广泛应用提供技术保障。

Agentic AI

一是应用编排框架的收敛,2023年底AI Agent应用编排框架收敛,为Agentic AI发展奠定基础,使开发者能更高效构建和部署智能化程度更高、对业务流程理解更深的多智能体系统。二是市场需求的增长,随着企业对自动化、智能化需求增加,超过60%的企业预计将实施自主智能系统,以减少人工干预,提高运营效率,Agentic AI能满足企业在物流、网络安全、客户支持等动态环境下的自主决策和任务执行需求,市场需求旺盛。三是技术基础的完善,从Chatbot、Copilot到AI Agent,行业对AI应用形态理解不断深入,相关技术逐渐成熟,为Agentic AI发展提供坚实技术基础,使其能在2025年实现更广泛的应用落地。四是跨团队合作的加强,Agentic AI项目需要开发者、数据科学家和产品经理等跨团队紧密协作,这种跨学科合作模式能充分发挥各方优势,加速Agentic AI技术的研发和创新。

以上是对智源研究院2025十大AI技术趋势的解读,供大家参考!

原文pdf 可关注公众号“科技之歌”回复“2025AI发展趋势”获取下载链接

内容概要:2025人工智能指数报告由斯坦福大学人类中心人工智能研究所发布,是第八版AI指数报告,旨在提供关于AI发展现状和未来趋势的权威数据。报告涵盖了研究与开发、技术性能、负责任AI、经济影响、科学与医学应用、政策治理、教育和公众意见八个章节。报告指出,AI领域的投资和发展主要由行业主导,尤其是在模型开发方面,而学术界则在高引用率的研究上保持领先。中国在AI出版物总量上领先,但美国在最具影响力的AI研究和模型开发上仍占据优势。此外,报告还探讨了AI在医疗健康、蛋白质分析、伦理责任等方面的进展和挑战。 适合人群:对人工智能领域感兴趣的政策制定者、研究人员、企业高管、记者以及公众。 使用场景及目标:①帮助政策制定者和企业高管更好地理解AI发展趋势及其对社会和经济的影响;②为研究人员提供最新的AI研究进展和技术性能评估;③引导公众关注AI伦理和社会影响,促进负责任的AI实践。 其他说明:报告提供了丰富的数据和交互工具,包括全球AI活力工具和原始数据图表,供读者根据自身需求进行深入分析。报告强调了AI在医疗健康领域的应用,如GluFormer模型在糖尿病预测方面的突破,以及ESM3模型在蛋白质生成中的创新。同时,报告也指出了AI面临的挑战,如复杂推理能力不足、隐私保护等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科技之歌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值