在 git clone 时添加了 --depth 后,如何重新拉取所有全部的历史来获取完整的仓库

当使用--depth参数进行浅克隆时,仅获取最新的一次提交记录,导致历史记录丢失。本文介绍如何通过执行git fetch --unshallow命令,将浅克隆的仓库转换为完整克隆,恢复全部历史记录。

现象

由于众所周知的原因,国内在拉 https://github.com/xxx/xxx.git 的时候速度特别慢,所以呢吗,有时我们为了加快 clone 的速度会使用 --depth 参数,比如:

git clone https://github.com/xxx/xxx.git --depth 1

但是这么拉下来之后呢,会有一个问题,就是执行 git log 的时候会显示只有一条提交记录。

root@d8acdd68f269:/source_code/mesos# git log
commit 54227a33b68d83b97ef1a7c14283351d45322317 (grafted, HEAD -> master, origin/master, origin/HEAD)
Author: Andrei Sekretenko <asekretenko@apache.org>
Date:   Fri Feb 28 22:39:54 2020 +0100

    Got rid of passing Shared<> into `Subscribers::Subscriber::send(...)`.

    Now that operator API events are authorized synchronously,
    `Subscribers::Subscriber::send(...)` is no longer deferred,
    and copying arguments of `Subscribers::send()` into `Shared`
    becomes unnecessary.

    Review: https://reviews.apache.org/r/72179

那么我们要如何把之前的历史重新再 pull 下来呢?

解决方案

实际上git fetch 专门有个参数,用来将浅克隆转换为完整克隆。

root@d8acdd68f269:/source_code/mesos# git fetch --help
...
--unshallow
           Convert a shallow repository to a complete one, removing all the limitations imposed by shallow repositories.

所以,只要执行 git fetch --unshallow 就可以了,接下来就等待命令执行完成,完成后就恢复到完整克隆了。

root@d8acdd68f269:/source_code/mesos# git fetch --unshallow
remote: Enumerating objects: 152405, done.
remote: Counting objects: 100% (152405/152405), done.
remote: Compressing objects: 100% (34825/34825), done.
Receiving objects:   3% (4524/150778), 1.26 MiB | 762.00 KiB/s
05-24
### 关于深度的概念 在算法和数据结构领域,“depth”通常指代某种层次或嵌套的程度。以下是几种常见的含义: #### 1. **树的深度** 在树形结构中,节点的深度定义为其到根节点的距离。对于一棵二叉树来说,其最大深度是从根节点到最远叶子节点路径上的边数[^1]。 ```python def tree_depth(node): if node is None: return 0 else: left_depth = tree_depth(node.left) right_depth = tree_depth(node.right) return max(left_depth, right_depth) + 1 ``` #### 2. **图的深度优先搜索(DFS)** 在图遍历算法中,深度优先搜索是一种通过深入探索某个顶点的所有邻接点来访问整个图的方法。它可以通过递归实现,并利用栈存储未处理的节点信息[^2]。 ```python def dfs(graph, vertex, visited=None): if visited is None: visited = set() visited.add(vertex) for neighbor in graph[vertex]: if neighbor not in visited: dfs(graph, neighbor, visited) return visited ``` #### 3. **堆栈或队列的最大深度** 当讨论基于堆栈的数据结构,深度可以表示为堆栈能够容纳的最大层数。这尤其适用于递归调用场景下的函数调用栈大小计算[^3]。 #### 4. **神经网络中的层深(Layer Depth)** 虽然严格意义上不属于传统意义上的算法与数据结构范畴,但在现代计算机科学特别是机器学习领域中,“depth”也常用来描述人工神经网络模型内部隐藏层数量——即所谓的“深层学习”。 --- ### 结论 综上所述,在不同上下文中,“depth”的具体意义有所差异,但都围绕着层级关系展开探讨。无论是用于衡量树的高度还是指导如何有效地执行特定类型的搜索操作,这一概念都是理解复杂系统行为模式不可或缺的一部分。
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值