深度学习
文章平均质量分 87
kupeThinkPoem
这个作者很懒,什么都没留下…
展开
-
显卡,显卡驱动,nvcc, cuda driver,cudatoolkit,cudnn区别?
在使用深度学习框架的过程中一定会经常碰到这些东西,虽然anaconda有时会帮助我们自动地解决这些设置,但是有些特殊的库却还是需要我们手动配置环境,但是我对标题上的这些名词其实并不十分清楚,所以老是被网上的教程绕得云里雾里,所以觉得有必要写下一篇文章当做笔记供之后参考。转载 2023-05-19 11:04:53 · 1188 阅读 · 0 评论 -
深度学习池化层的作用
目录一、概述二、池化分类1、Max Pooling:最大池化2、Average Pooling:平均池化三、池化作用1.、invariance(不变性),2、降维度3、增大感受野4、获得定长输出。5、防止过拟合或有可能会带来欠拟合。6、减小计算量和内存消耗7、非线性和鲁棒性8、聚合特征9、下采样(downsamping)一、概述 池化(Pooling):也称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时...原创 2021-09-09 18:36:11 · 6128 阅读 · 1 评论 -
深度学习防止过拟合的方法
目录一、概述二、解决方法一、概述 我们都知道,在进行数据挖掘或者机器学习模型建立的时候,因为在统计学习中,假设数据满足独立同分布(i.i.d,independently and identically distributed),即当前已产生的数据可以对未来的数据进行推测与模拟,因此都是使用历史数据建立模型,即使用已经产生的数据去训练,然后使用该模型去拟合未来的数据。但是一般独立同分布的假设往往不成立,即数据的分布可能会发生变化(distribution drift),并且可能当前的..原创 2021-09-09 17:56:18 · 3268 阅读 · 0 评论 -
【深度学习之美笔记】人工“碳”索意犹尽,智能“硅”来未可知(入门系列之二)
目录一、前言二、深度学习再认识2.1 人工智能的“江湖定位”2.2 深度学习的归属2.3.机器学习的形式化定义2.4 为什么要用神经网络?2.5 小结2.6 请你思考三、参考文献四、参考一、前言 在前面的小节中,我们仅仅泛泛而谈了机器学习、深度学习等概念,在这一小节,我们将给出它的更加准确的形式化描述。 我们经常听到人工智能如何如何?深度学习怎样怎样?那么它们之间有什么关系呢?在本小节,我们首先从宏观上谈谈人工智能的“江湖定位...原创 2021-09-09 13:03:35 · 341 阅读 · 0 评论 -
【深度学习之美】一入侯门“深”似海,深度学习深几许(入门系列之一)
目录一、导言二、深度学习初步认识1.1 什么是学习?1.2 什么是机器学习?1.3 学习的4个象限1.4 机器学习的方法论1.5 什么是深度学习?1.6 “恋爱”中的深度学习1.7 小结1.8 请你思考三、参考文献一、导言 目前人工智能非常火爆,而深度学习则是引领这一火爆现场的“火箭”。于是,有关“深度学习”的论文、书籍和网络博客汗牛充栋,但大多数这类文章都具备“高不成低不就”的特征。对于高手来说,自然是没有问题,他们本身已经具备非常“深度...转载 2021-09-05 08:20:21 · 516 阅读 · 0 评论 -
深度学习之美系列之14篇
一、《深度学习之美》成书前的深度学习14篇目录一. 一入侯门“深”似海, 深度学习深几许 (深度学习入门系列之一)二. 人工“碳”索意犹尽, 智能“硅”来未可知(深度学习入门系列之二)三. 神经网络不胜语, M-P 模型似可寻 (深度学习入门系列之三)四. “机器学习”三重门, “中庸之道”趋若人 (深度学习入门系列之四)五. Hello World 感知机,懂你我心才安息 (深度学习入门系列之五)六. 损失函数减肥用, 神经网络调权重 (深度学习入...转载 2021-09-05 07:43:00 · 742 阅读 · 0 评论