本文所指二叉树 皆为普通二叉树,下同
二叉树的定义
在介绍相关操作时,请记住一点,
二叉树构建核心思想是递归,
typedef char treeNodeType;
typedef struct _treeNode{
struct _treeNode* left;
struct _treeNode* right;
treeNodeType value;
}treeNode;
相关操作有:
1 二叉树的先序,中序,后续遍历的递归版,使用栈循环版,还有使用队列层序遍历版
2 求二叉树某层的节点数,求二叉树的总节点数,求二叉树叶子节点数,
3 求某节点的左右子节点 或者父节点
3 将二叉树镜像翻转
4 判断一颗二叉树是否是完全二叉树
5 在二叉树中查找某节点
6 二叉树的深拷贝(clone)
7通过前序有标记空节点结果 构建二叉树
8 通过前序中序遍历构建二叉树
这篇博客主要解决加粗部分,详细代码请参见
其中有完整头文件,源文件,和单元测试.
感谢!
剩余操作请参见
(c语言实现)二叉树的相关操作 (一) 二叉树的递归遍历和循环遍历
(c语言实现)二叉树的相关操作 (三) 通过遍历构建二叉树的两种类型
二叉树节点的计算
求二叉树某层节点数
在求某层节点时,首先需要遍历所有树,这里采用先序遍历,
在遍历时,创建一个标记变量,记录当前二叉树的深度,
当深度等于要求的层数而且节点非空时返回1;
并且递归的求解某节点左子树和右子树满足条件的节点
size_t TreeKLevelSize(treeNode* root, int k)
{
if( root == NULL || k == 0)
return -1;
int count = 1;
return _TreeKLevelSize(root,k,count);
}
size_t _TreeKLevelSize(treeNode* root,int k,int deep_count)
{
if(root == NULL || deep_count > k)
return 0;
if(k == deep_count)
return 1;
return _TreeKLevelSize(root->left,k,deep_count + 1)
+ _TreeKLevelSize(root->right,k,deep_count + 1);
}
求树的高度
对于一棵树,它的高度等于左子树的高度和右子树高度中最高的那一个,
所以我们可以递归的求解左子树和右子树中最高的那一个
size_t TreeHeight(treeNode* root)
{
if(root == NULL)
return 0;
int left_count = 1 + TreeHeight(root->left);
int right_count = 1 + TreeHeight(root->right);
return left_count > right_count ? left_count : right_count;
}
求二叉树叶子节点的个数
递归的求左子树和右子树的叶子节点
若碰到空节点(NULL) return 0 返回
当节点的左右节点都为空时表示找到了叶子节点,return 1
size_t TreeLeafSize(treeNode* root)
{
if(root == NULL)
return 0;
if(root->left == NULL && root->right == NULL)
return 1;
else
//递归求树左子树和右子树中 叶子节点
return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}
求二叉树的父节点
从根节点开始递归遍历
若A节点的左子节点或者右子节点等于被检索的节点,那么返回A节点
若没有找到则返回NULL
注意我们在每次递归的栈帧中都开辟了一个 parent_node 的变量来保存已经找到的父节点
用来向上级调用函数返回结果
treeNode* Parent(treeNode* root, treeNode* node)
{
if(root == NULL || node == NULL)
return NULL;
treeNode* Parent_Node = NULL;
if(root->left == node || root->right == node)
return root;
Parent_Node = Parent(root->left, node);
//当在左子树中没有找到时,才在右子树中找
if(Parent_Node == NULL)
Parent_Node = Parent(root->right, node);
return Parent_Node;
}
二叉树的镜像翻转
将
4
/ \
2 7
/ \ / \
1 3 6 9
翻转为
4
/ \
7 2
/ \ / \
9 6 3 1
我们可以遍历二叉树,只要它不是NULL,就把它的子节点交换,
当遍历结束时就将整个二叉树翻转完毕了,这里采用先序遍历
void TreeMirror(treeNode* root)
{
if( root == NULL )
return;
treeNode* tmp = root->left;
root->left = root->right;
root->right = tmp;
TreeMirror(root->left);
TreeMirror(root->right);
}
据说homebrew的作者(一位大牛) 在面试谷歌时因为在白板上做不出来这道题而被谷歌拒绝了..
当你会了道题, 可以get到Google的offer了 哈哈哈哈哈
判断二叉树是否是完全二叉树
完全二叉树(Complete Binary Tree)
若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。
我们可以用反证法判定二叉树
1 当一个节点有右子树而没有左子树时,肯定不是完全二叉树
2 当一个节点只有左子树时,该节点以后都必须是叶子节点,以下不是完全二叉树
3. 当出现叶子叶子节点时,该节点往后都必须是叶子节点,以下不是完全二叉树
我们可以通过层续遍历,来遍历这个树,
并且设置两个标记
SingleChild_flag 标记已经到度为1的情况
ReachLeaf_flag 标记到达叶子节点
int IsCompleteTree(treeNode* root)
{
if(root == NULL)
return -1;
int SingleChild_flag = 0;
int ReachLeaf_flag = 0;
queue q;
queueInit(&q);
queuePush(&q,root);
while(queueHead(&q) != NULL)
{
if( ReachLeaf_flag == 1 )
{
//到达叶子节点,但是以后节点不是叶子节点
if(queueHead(&q)->left != NULL || queueHead(&q)-> right != NULL)
return 0;
}
if(SingleChild_flag == 1)
{
//到达度为1的节点,以后的节点不是叶子节点
if(queueHead(&q)->right != NULL || queueHead(&q)->left != NULL)
return 0;
}
//只有右节点
if(queueHead(&q)->right != NULL && queueHead(&q)->left == NULL)
return 0;
//只有左节点
else if( queueHead(&q)->left != NULL && queueHead(&q)->right == NULL )
{
//从该节点以后的节点必须是叶子节点
SingleChild_flag = 1;
ReachLeaf_flag = 1;
queuePush(&q,queueHead(&q)->left);
queueFront(&q,NULL);
continue;
}
//叶子节点
else if(queueHead(&q)->right == NULL && queueHead(&q)->left == NULL)
{
ReachLeaf_flag = 1;
queueFront(&q,NULL);
continue;
}
//有左右节点
else
{
queuePush(&q,queueHead(&q)->left);
queuePush(&q,queueHead(&q)->right);
queueFront(&q,NULL);
}
}
return 1;
}
在二叉树中查找某节点
因为是普通二叉树,所以还得遍历查找,时间复杂度为o(n),当遇到目标则返回
若查找不到返回NULL
treeNode* TreeFind(treeNode* root, treeNodeType to_find)
{
treeNode* node = _TreeFind(root, to_find);
return node;
}
treeNode* _TreeFind(treeNode* root, treeNodeType to_find)
{
treeNode* to_ret = NULL;
if(root == NULL)
return NULL;
if(root->value == to_find)
return root;
to_ret = _TreeFind(root->left, to_find);
if(to_ret == NULL)
to_ret = _TreeFind(root->right, to_find);
return to_ret;
}