yield在pytest的fixture中的作用

在了解yield 的使用方法前,需要先了解fixture

1.什么是Fixture

Fixture 是用于为测试提供初始化环境和数据的功能。

可以将它理解为一段“准备工作”,它可以在每个测试用例之前执行,用来准备测试所需的数据、资源或配置,比如数据库连接、模拟数据、认证信息等。

2.定义 fixture 的步骤

定义一个函数:这个函数可以做任何你需要的初始化工作(比如创建对象、准备数据、设置数据库连接等),并返回一个值供测试用例使用。

②使用 @pytest.fixture 装饰器:将该函数标记为 fixture

③在测试用例中传入 fixture 的名称pytest 会自动将 fixture 的返回值传递给测试用例

3.yield 的作用:

 yield 在 pytest 的 fixture 中起到前后置操作的作用,主要用于拆分前置操作(如资源的创建、初始化)和后置操作(如资源的清理、关闭)。

通俗解释:

在 yield 之前的代码相当于“初始化”工作,yield 返回的值会被测试用例使用,等测试用例执行完毕后,yield 之后的代码才会执行,也就是“清理”工作。

4.举例说明:

'''

假如我们使用 @pytest.fixture 装饰器将该函数temp_file标记为 fixture

在temp_file函数中创建一个临时文件夹,然后将文件返回出去,最后再删除文件

步骤拆分:

1.创建一个临时文件夹:(预期)前置操作,即其他方法在运行前,先调用这个操作

2.返回结果给测试用例:(预期)跟着1走,在1运行完后,紧接着将结果返回

3.删除文件:(预期) 仅在"使用该 fixture 的测试用例执行完毕后"立即执行

'''

5.代码示例:

import pytest

# 定义 fixture,用于创建临时文件并在测试后删除
@pytest.fixture
def temp_file():
    # 前置操作:创建一个临时文件
    file = open("temp.txt", "w")
    file.write("Temporary file for testing")
    file.close()

    # yield 让 pytest 返回结果给测试用例
    yield "temp.txt"

    # 后置操作:测试用例结束后删除文件
    import os
    os.remove("temp.txt")

# 使用 fixture 的测试用例
def test_temp_file_exists(temp_file):
    # temp_file 是 fixture 返回的临时文件名
    assert os.path.exists(temp_file)

6.注意事项:

yield 后面的清理操作 只会在使用该 fixture 的测试用例执行完毕后 立即执行,而不是等所有测试用例全部执行完毕。换句话说,pytest 会在每个引用该 fixture 的测试用例结束后,马上执行 yield 后的清理代码。

7.总结

  • yield 的主要作用:在 pytest.fixture 中拆分初始化和清理工作。yield 之前的代码是前置操作,yield 返回的值供测试用例使用,yield 之后的代码是后置操作,在测试用例执行完后才会运行。
  • temp_file 的例子中,yield 暂停了 fixture 的执行,让文件 "temp.txt" 可以被测试用例引用和操作,只有在测试用例执行结束后,才会删除该文件。

Pytest中,如果你希望避免fixture(测试套件)产生的副作用影响其他测试,可以考虑以下几个策略: 1. **局部fixture**:将fixture声明为`scope="function"`,这意味着每个函数调用都会得到一个新的独立实例,这样就不会对后续的测试造成影响。 ```python @pytest.fixture(scope="function") def my_fixture(): # 函数级的初始化操作 yield # 函数结束后清理操作 ``` 2. **一次性fixture**:如果一个fixture需要在整个测试集执行一次,可以设置`scope="session"`。但是需要注意,这类fixture应该尽量不产生副作用,因为它们只创建一次,可能会对所有测试有全局影响。 ```python @pytest.fixture(scope="session") def one_time_setup(): # 仅执行一次的操作 yield ``` 3. **使用with语句**:对于一些资源,如数据库连接,可以使用上下文管理器(with statement),确保在离开块时资源会被正确关闭,这样不会影响后续测试。 ```python import pytest from contextlib import closing @pytest.fixture def db_connection(): with closing(database_connect()) as conn: yield conn ``` 4. **参数化fixture**:通过`parametrize`装饰器,可以为同一个fixture提供多个输入值,这样每次调用都会运行对应的新环境,减少了副作用的可能性。 ```python @pytest.mark.parametrize("input_data", [data1, data2]) def test_something(input_data): with my_fixture(input_data) as result: assert result.is_valid() ``` 5. **隔离fixture**:有些库如`pytest-xdist`或`pytest-datadir`提供了更高级别的隔离机制,允许你在分布式测试环境中更好地控制fixture的行为。 记住,总是尽量保持fixture简洁、无副作用,这有助于提高测试的可靠性和可维护性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值