- 博客(629)
- 收藏
- 关注
原创 一文带大家了解DeepSeek不同版本 1.5B、7B、14B、32B、70B的含义以及应用场景
DeepSeek 模型的不同版本(如 1.5B、7B、14B、32B、70B)通常是指模型的参数量,其中“B”代表“Billion”(十亿)。参数量是衡量模型规模和复杂性的重要指标,通常与模型的性能和能力密切相关。以下是这些版本的具体含义和区别。
2025-02-12 09:15:44
33019
原创 干货!Jmeter+influxdb+grafana轻松实现性能压测结果实时监控
目前大多数公司使用jmeter压测出来的报告都是用jmeter原生自带的HTML测试报告,其实jmeter还可以扩展支持实时监控打造性能监控平台,技术实现采用jmeter+influxdb+grafana。网上的大多数文章都是通过docker的形式安装,我在这里就不多做介绍了,如果没有docker环境其实我们直接下载influxdb 和Grafana进行安装配置,也是非常方便的,本文将以windows环境为例讲解关于influxdb 和Grafana的安装,二者都部署到一台win10的pc上。
2024-02-28 15:53:39
1701
原创 献给想提升编码能力的测试人员,一步步教大家上手Java自动化测试架构设计
文章中每一个重要的知识点都有更为详细的链接文章进行深度解读。文章有点长,建议大家收藏慢慢消化,相信认真阅读过文章的同学一定会有非常大的收获!再次强调,测试同学会编码是刚需,自动化测试是tester入门编码的最佳实践,没有之一!再次强调,测试同学会编码是刚需,自动化测试是tester入门编码的最佳实践,没有之一!再次强调,测试同学会编码是刚需,自动化测试是tester入门编码的最佳实践,没有之一!
2023-12-29 16:08:49
1467
原创 详解如何使用VSCode搭建TypeScript环境(适合小白)
因为TypeScript不能直接在浏览器上运行。它需要编译器来编译并生成JavaScript文件。所以需要首先安装好javascript环境,可以参考文章
2023-11-27 16:02:51
10073
1
原创 想要上手playwright?看这篇文章就够了!(文章有点长,建议收藏)
本文系统地介绍了playwright的基础概念,架构,安装过程,编码demo(python实例),常用API,录制脚本的方法以及playwright在无头模式的应用和其与selenium的对比。相信大家认真阅读本文后一定会对playwright有一个概括的认识,并可以编写自动化测试脚本在实际工作中进行应用,文章较长建议收藏多读几遍!
2023-05-15 13:48:54
8050
1
原创 国产之光Yakit——POC模拟神器
Yakit 是一个高度集成化的 Yak 语言安全能力的安全测试平台,使用 Yakit,可以做到:1. 类 Burpsuite 的 MITM 劫持操作台2. 查看所有劫持到的请求的历史记录以及分析请求的参数3. 全球第一个可视化的 Web 模糊测试工具:Web Fuzzer4. Yak Cloud IDE:内置智能提示的 Yak 语言云 IDE5. ShellReceiver:开启 TCP 服务器接收反弹交互式 Shell 的反连6. 第三方 Yak 模块商店:社区主导的第三方 Yak 模块插件,
2023-01-09 10:01:49
13612
原创 POC模拟攻击利器 —— Nuclei入门(一)
Nuclei是一款基于YAML语法模板的开发的定制化快速漏洞扫描器。它使用Go语言开发,具有很强的可配置性、可扩展性和易用性。Nuclei使用零误报的定制模板向目标发送请求,同时可以对大量主机进行快速扫描。Nuclei提供TCP、DNS、HTTP、FILE等各类协议的扫描,通过强大且灵活的模板,可以使用Nuclei模拟各种安全检查。.........
2022-07-26 15:10:50
21004
3
原创 Python面试高频问题: os.system()和os.popen()的区别
大家搞python与操作系统交互时,必须掌握的两个方法就是os.system()和os.popen(),也是在相关技术领域面试中必问的题目!本文就对这两个命令进行详细介绍,os.system()和os.popen()都可以执行shell命令,但是他们还是有一定的区别的。...
2022-06-08 16:30:30
12907
2
原创 Jmeter 在centos上安装步骤以及压测方案
如果jmeter 单机需要大并发运行,那么通常选择linux作为压力机。本文将讲解如何在centos上配置jmeter压力机以及其压测方案。本文默认读者已经掌握了jmeter的基础使用方法。在centos上安装jmeter下载jmeter tgz版本Apache JMeter - Download Apache JMeter注意5.4.3版本的jmeter,需要java最低版本是1.8拷贝安装包到centos上,解压jmetertar -zxvf apache-jme...
2022-04-13 09:43:32
4289
2
原创 五分钟带你了解什么是敏捷测试
随着敏捷开发模式的普及,越来越多的测试同仁也开始了敏捷测试。那么究竟什么是敏捷测试?敏捷测试与传统测试的主要区别是什么?敏捷测试的难点又是什么?本文会对这三个问题进行讲解。注意:本文只是讲解敏捷测试概念相关的核心内容,并未涉及技术细节以及实际工作中的实施案例。敏捷开发简单地说,敏捷开发是一种以用户需求进化为核心、迭代、循序渐进的开发方法。首先把用户最关注的软件原型做出来,交付或上线,在实际场景中去快速修改弥补需求中的不足,再次发布版本。通过敏捷实践,细化story ,提供更小的迭代。如...
2022-03-23 11:48:53
2874
原创 python多线程:主线程、子线程、守护线程、join方法(附源码)
在涉及python多线程编程的时候,有四个特别重要的概念需要大家深入理解:主线程、子线程、守护线程以及线程的join方法。文章默认大家都知道python 多线程的常规用法,这里就不再详细讨论了,仅对这四个概念进行详细描述讲解。本文可能是全网讲解相关概念最通俗易懂的文章之一了,为了加深理解大家可以拷贝代码进行实际操作,相信效果会更好!主线程和子线程主线程:应用程序运行即为主线程(从程序第一行到最后一行执行完毕,中间遇到子线程的start,子线程去执行它的函数,主线程继续往下执行其他语句)...
2022-02-25 10:14:41
12323
1
原创 Java中实现接口的三种方式您造吗?
本文介绍了Java中实现接口的三种方式:常规实现方式、匿名内部类和 Lambda表达式实现方式。希望已经了解的同学可以重新温习一下,不了解的同学则从中受益!Java中接口最常规的实现方式同学们都会知道,java中实现接口的方法通常如下:定义接口定义类实现接口类中重写接口里的方法创建类对象调用重写后的方法代码实现如下://定义一个接口public interface ITest { public void func1();}//类实现该...
2022-01-12 14:23:48
7033
1
原创 详解numpy中的array(附实例源码)
Numpy定义NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy 通常与 SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用,这种组合广泛用于替代 MatLab,是一个强大的科学计算环境,有助于我们通过 Python 学习数据科学或者机器学习。NumPy 主要应用包括:机器学习模型:在编写机器学习算法时,需要对矩阵进行各种数值...
2021-12-15 10:19:50
7344
原创 测试开发工程师必备技术栈(附详细技术点)
近些年来,测试人员会写代码已经成为业界刚需。目前高薪的测试工作岗位都硬性需要java和python的代码技能,大家也一定意识到了能够编写代码的重要性和迫切性。 “测试开发”也成了热门岗位。测试开发工程师简单地说就是既会测试又懂代码的测试人才!他们能够帮助开发和测试同学提升测试效率,进而帮助公司提升整体的研发效率!那么测试开发工程师的主要工作职责是什么呢?他们需要的技术栈又有哪些呢?在这里我给大家进行一个详细的汇总!核心:编码能力!Java或者Python都可以,两者兼顾最好!主要工作内容:...
2021-02-26 10:06:47
8243
6
原创 JVM中的堆和栈到底存储了什么
本文介绍了JVM运行时数据区的堆和栈内存结构。堆是线程共享的内存区域,主要用于存储对象实例和数组;栈是线程私有的运行单位,存储方法调用的局部变量和运行状态。两者主要区别在于:栈解决程序执行问题,堆解决数据存储问题;栈存储线程相关信息,堆存储对象信息。文章还分析了堆栈的内存分配机制和可能的内存溢出情况,并通过代码示例演示了变量在堆栈中的存储与回收过程,帮助理解JVM内存管理机制。
2020-11-05 11:16:30
11290
2
原创 使用神器Spotbugs,轻松入门静态代码分析
本文介绍了静态代码分析的概念及其重要性,指出其能在开发早期发现代码问题。重点讲解了SpotBugs工具,作为Findbugs的继任者,它能检测Java字节码中的多种错误模式,包括安全漏洞、性能问题等。文章详细说明了如何在Eclipse中安装配置SpotBugs,并演示了扫描项目和查看结果的方法。最后建议逐步修复问题,虽然不能消除所有错误,但能显著减少生产中的缺陷数量。静态代码分析是提升软件质量的有效手段,值得测试和开发人员掌握使用。
2020-11-02 17:22:02
9804
原创 代码依赖包安全漏洞检测神器 —— Dependency Check
目前各个企业对于应用的安全越来越重视,而解决应用漏洞的本质是从代码安全抓起。通常关于代码的安全问题有两类:代码本身的安全问题和代码依赖包存在的安全问题。对于代码本身的安全问题,我们可以通过静态代码分析工具解决。而对于代码依赖包的安全问题是我们这篇文章重点解决的事情,业界通常使用Dependency-Check来检查代码中是否存在任何已知的,公开披露的安全漏洞。他检查依赖项中是否存在漏洞的原理也跟我们熟知的病毒查杀软件一样,预先定义好目前已知的安全漏洞库,检查依赖包时,发现这些漏洞就会报错,最后定期更新安全漏
2020-11-02 17:19:23
14213
7
原创 Burpsuite社区版核心功能使用说明
序言我在这里对Burpsuite社区版的核心功能做一个详细介绍,目的是对想从事安全渗透测试的同学提供一个快速入门的手册!Burpsuite社区版开放的免费功能完全符合想入门渗透测试的同学的需求,当大家熟练地使用社区版后,就能够对渗透测试有了初步的认识,然后可以有的放矢的选择其他工具进行深入学习!试用结论社区版下载地址https://portswigger.net/burp/communitydownload初步比较结论:Burp的免费版中关于渗透测试需要的常用模块:Prox.
2020-11-02 17:15:51
11263
原创 两句话让大家了解测试开发职位的核心职责
测试开发是目前最热的测试职位,那么这个职位到底从事哪些工作呢?目前主要有两大类:第一,测试平台的开发;第二,自动化测试,接口测试的脚本开发。前者等价于开发;后者是编写脚本的测试人员。前者应用的技术都是开发人员涉及的技术;而后者,本职还是测试人员,需要掌握ui自动化测试技术,接口测试技术或者白盒测试技术。未来测试人员能编码是刚需,核心工作是帮助开发人员提升整体项目的研发效率。...
2020-10-30 15:15:00
3030
1
原创 给大家分享一个医疗AI偏见测试报告
本文提供了一份医疗AI偏见测试报告的标准模板(版本1.2),适用于诊断辅助、分诊系统等医疗AI应用。模板包含基础信息、测试目标、敏感属性定义、公平性指标阈值等核心模块,重点评估不同患者群体在诊断准确率、分诊优先级等方面的公平性表现。测试结果显示心脏病诊断存在4.1%的性别差异(女性准确率偏低),农村患者获得紧急分诊的比例低于城区6.4个百分点。报告提出了数据增强、模型优化等改进措施,并强调需符合《生成式人工智能服务管理暂行办法》等法规要求。该模板可用于医疗AI系统的季度例行测试和合规审查。
2026-02-05 09:01:13
1002
1
原创 一文带大家理解1 个 MCP Client可以取代100 个适配器
MCP通过标准化协议大幅简化AI工具接入流程。传统方式需要为每个工具编写专用适配器(100个工具需100个适配器),存在重复开发和维护难题。MCP引入统一JSON-RPC接口后,只需开发一个通用客户端即可接入所有符合协议的工具,新增工具时无需修改代码。这种"USB-C接口"模式将N×M的复杂度降为1,使工具扩展和维护成本显著降低。MCP相当于为不同工具提供统一"红帽子"标识,让AI通过标准化方式与各类工具交互。
2026-02-05 08:49:15
1070
原创 如何搭配通义灵码中的推荐模式和推荐模型(qwen3-coder、Qwen3-Thinking、Qwen2.5-Max)来高效的写出王炸代码呢?
通义灵码提供三种AI交互模式:智能问答(纯咨询)、文件编辑(精准代码修改)和智能体(全自动任务执行)。模型选择建议:Qwen3-Coder专攻代码开发,是智能体模式的核心驱动;Qwen3-Thinking擅长复杂逻辑推理;Qwen2.5-Max作为通用备选。开发者最优组合:日常使用Qwen3-Coder+智能体模式实现端到端开发,精修代码时切换文件编辑模式,解决复杂算法问题则选用Qwen3-Thinking进行深度推理。该方案覆盖了从常规开发到疑难问题解决的全场景需求。
2026-02-04 09:09:25
963
1
原创 智能体完整详解:一个实例带您完成从理论到实践的升级(内附源码)
智能体(Agent)是一种能够自主感知环境、做出决策、执行行动并持续学习的软件实体。与传统程序不同,智能体具有主动性和适应性,通过五大核心节点实现闭环运作:感知节点获取环境信息,规划节点制定策略,生成节点执行任务,反思节点评估结果,学习节点积累经验。以智能购物助手为例,它能分析用户需求(如"买运动鞋"),制定购物策略,生成商品推荐,评估推荐质量,并将经验存入记忆库供后续使用。这种架构通过动态决策和学习能力,实现了自主性、适应性和智能性,可广泛应用于代码生成、客户服务等多个领域,只需调整提
2026-02-04 08:59:08
442
原创 以医疗行业为例,带大家理解什么是AI偏见测试
AI偏见指人工智能系统对特定群体(如性别、种族等)产生系统性不公平对待的现象。在医疗领域,AI偏见可能导致诊断不公、治疗延误等严重后果。测试重点在于发现不同群体间的性能差异(如诊断准确率差距14%),而非功能错误。调优流程包括:定位偏见根源(数据/算法/部署层面)、选择策略(数据重采样/公平性约束)、验证效果。推荐使用AIF360、Fairlearn等工具进行偏见检测和修正。医疗AI测试工程师需平衡公平性与性能,持续监控数据分布变化,确保患者权益。
2026-02-03 09:08:18
1167
1
原创 如何解决vscode使用远程资源管理常见问题:远程主机可能不符合 glibc 和 libstdc++ VS Code 服务器的先决条件
摘要:VSCode远程连接报错"远程主机不符合glibc/libstdc++先决条件"的解决方案:1)推荐降级VSCode至1.98.x版本并关闭自动更新;2)修改远程连接设置使用静态服务器版本;3)风险较高的系统库升级方案(不推荐)。同时针对降级后可能出现的SSH MAC不匹配问题,建议修改本地SSH配置添加hmac-sha1算法。文章详细说明了各方案的操作步骤,特别强调glibc升级可能导致系统崩溃的风险,建议普通用户优先选择降级方案。
2026-02-03 08:56:19
635
原创 小tip:换行符CRLF 和 LF 的区别以及二者在实际项目中的影响
CRLF和LF是不同操作系统使用的换行符标记:Windows使用CRLF(\r\n),而Linux/macOS使用LF(\n)。这种差异会导致开发中的诸多问题,包括Git版本混乱、脚本执行错误、文件体积膨胀、数据解析错位和正则匹配失败。解决方法包括统一团队规范为LF、配置Git自动转换、使用.gitattributes文件强制格式统一,以及编辑器手动切换换行符格式。这些措施能有效避免跨平台协作时的换行符相关问题。
2026-02-02 10:23:38
456
1
原创 一文带大家了解如何通过有效利用token防止接口被恶刷
Token校验是一种有效防止接口被恶意刷取的安全技术。其核心原理是服务端签发临时、一次性且有时效性的Token,客户端必须在请求时携带该Token才能完成敏感操作。典型实现包括前端获取Token、服务端生成并缓存、前端携带Token请求、服务端校验四个步骤。关键设计要点包括时效性控制、一次性使用、上下文绑定及操作类型隔离。Token校验需与其他防护机制结合使用,如验证码、设备指纹等,并注意其局限性。开发中需遵循安全审计清单,确保Token生成、存储、传输及校验过程的安全可靠。Token校验作为防刷第一道防线
2026-02-02 10:21:01
671
原创 为什么 pip 安装某些包需要 GCC 环境,而 conda 不需要
摘要: Python包安装的核心差异在于**预编译包(.whl)与源码包(.tar.gz)**的处理方式。 Pip:优先下载预编译的Wheel包(无需编译),若无匹配版本则下载源码包并依赖本地编译器(如GCC)进行编译,安装较慢且需环境适配。 Conda:直接安装预编译的二进制包(如.dll/.so),无需编译,速度快且兼容性稳定。 关键区别: 源码包:需本地编译,适配性强但依赖编译器(如安装NumPy需GCC)。 预编译包:直接安装,速度快但平台特定(如numpy-1.24.3-cp311-win_amd
2026-02-01 10:16:39
374
原创 一文带您从测试视角理解什么是AI偏见?
AI偏见是指人工智能系统在决策过程中对特定群体(如性别、种族、年龄等)产生系统性不公平对待的现象。测试工程师需重点关注四大偏见类型:数据偏见、算法偏见、部署偏见和交互偏见。测试方法包括群体公平性测试、对抗样本测试和影子测试,核心指标需监控统计均等性、机会均等性等差异是否超过5%阈值。企业应建立完整的AI偏见测试流程,从需求分析到持续监控。测试工程师凭借用户视角和系统思维优势,在AI伦理测试领域具有重要价值。建议立即创建敏感属性清单,编写公平性测试并集成到CI/CD流程中。AI偏见测试已成为现代软件质量保障的
2026-02-01 10:16:14
916
原创 推荐使用Miniconda安装chromadb,完美绕过C++ 编译问题
摘要:针对安装chromadb时遇到的numpy依赖问题,本文推荐使用Miniconda解决方案。相比Anaconda,Miniconda更轻量且能有效管理Python多环境,避免依赖冲突。安装只需5分钟:下载Miniconda并勾选PATH选项,创建独立环境后通过conda-forge通道一键安装chromadb和兼容的numpy版本。该方法无需C++编译环境,利用预编译包快速解决依赖问题,是Python项目管理的理想选择。文中还提供了环境管理、镜像加速等实用技巧,帮助开发者高效搭建chromadb运行环
2026-01-30 09:04:47
913
原创 一文整理LoRA微调参数的黄金配置以及参数含义
LoRA微调参数配置指南:从模型结构到显存优化 本文系统介绍了使用LoRA技术微调大语言模型时的关键参数配置方法,分为三个维度: 模型结构参数:包括秩(r)、缩放因子(lora_alpha)、目标模块(target_modules)等,决定了适配器的容量和连接方式; 教学策略参数:如学习率、训练轮次等,影响模型学习效果; 显存优化参数:包括批量大小、梯度累积等技巧,确保训练可行性。文章提供了"黄金配置"模板,建议初始采用r=64、lora_alpha=128、target_modules
2026-01-30 09:01:24
1315
原创 LoRA 微调训练背后的原理:让模型学会“套路”
LoRA微调并非让模型死记单一样本,而是教会其"解题思路"。通过训练指令-输出对,模型学会识别任务模式并调用预训练知识库,实现泛化能力。训练数据量决定泛化程度:少量数据仅能简单映射,而多样化的海量数据可使模型掌握复杂任务处理能力。LoRA本质是调整模型注意力机制,引导其正确激活已有知识,而非灌输新内容。因此,精心设计多样化训练样本才能让模型真正学会"举一反三"的技能。
2026-01-29 13:29:47
550
原创 LoRA:其实就是给大模型“装插件”(内附python微调源码)
LoRA(低秩适应)是一种高效微调大模型的技术,通过训练少量额外参数(适配器)来赋予大模型新能力,而无需修改原始参数。相比全量微调,LoRA具有显存占用低、训练速度快、存储成本小等优势。技术实现包括冻结原模型、注入低秩矩阵、训练适配器、合并权重等步骤。文章提供了使用LoRA微调千问模型的完整代码流程,涵盖环境准备、数据格式化、参数配置、训练实施等环节,并强调数据质量比数量更重要。该技术特别适合个人开发者和企业私有化部署场景。
2026-01-29 13:23:48
666
原创 一文带大家掌握如何通过LoRA对大模型进行微调
LoRA(低秩适应)是一种高效微调大模型的技术,通过训练少量适配器参数实现模型定制,无需修改原模型。与QLoRA(量化版LoRA)相比,LoRA显存占用中等、训练较快,QLoRA通过4-bit量化显著节省显存但速度略慢。HuggingFace的peft库集成了LoRA技术,提供便捷的微调工具。对千问模型微调时,需配置LoRA参数(如秩r)、准备数据,并使用Trainer进行训练。训练后可合并适配器权重或单独使用。建议根据硬件条件选择LoRA或QLoRA,并合理设置参数。该技术能在有限资源下高效定制大模型。
2026-01-28 09:33:31
693
原创 使用LoRA 是否等同于搭建一个新的知识库呢?用一个通俗的例子告诉大家答案!
LoRA与RAG是两种互补的大模型优化技术。LoRA通过微调少量参数让模型掌握新技能或改变行为风格(如学习编程或调整语气),具有固化知识但时效性差的特点。RAG则为模型提供外部知识库检索能力,实现实时信息获取但不会改变模型本身。两者可协同使用:先用LoRA训练专业能力(如法律思维),再通过RAG接入最新知识库(如法规条文),从而构建既专业又知识更新的智能系统。LoRA适合技能学习,RAG适合实时知识补充,组合使用效果最佳。
2026-01-28 09:26:12
455
原创 用一个简单的例子解释RAG的核心实现——本地的 ChromaDB 是如何配合千问(Qwen)生成测试用例的
摘要:本文介绍了一种结合本地ChromaDB和千问(Qwen)模型的RAG(检索增强生成)技术方案,用于精准生成测试用例。该系统分为知识准备和用例生成两个阶段:首先将项目文档分割、向量化后存入ChromaDB;当用户提出需求时,系统先检索相关文档片段,再结合千问模型生成符合业务规则的测试用例。该方法有效解决了大模型的"幻觉"问题,确保测试用例基于最新业务逻辑。文中还提供了核心实现逻辑的伪代码示例,展示了如何将检索结果与用户指令结合构建提示词,最终通过千问模型输出结构化测试用例。
2026-01-27 09:33:50
549
原创 一看就懂!通过ChromaDB实现“个人知识库问答”场景的技术实现方案
本文提出一个基于RAG架构的个人知识库问答系统方案。系统包含知识库构建和智能问答两个阶段:在构建阶段,使用LangChain加载各类文档,通过文本分块(推荐500字符大小)和开源中文嵌入模型(如BAAI/bge-small-zh)将文档转化为向量存入ChromaDB;在问答阶段,结合语义检索和LLM生成答案,支持多路召回和结果重排序优化检索效果。文章强调合理设置分块大小、选择适配中文的嵌入模型以及添加丰富的元数据是提升系统效果的关键,并提供了极简实现代码示例。建议先用本地开源模型搭建最小可行系统,再逐步优化
2026-01-27 09:30:36
609
原创 关于chromadb 大家想过这个问题吗?为什么通过 pip install chromadb能够实现完整的数据库安装?
ChromaDB是一个多语言混合开发的项目,采用分层架构设计。其核心引擎使用Go语言编写,负责高性能的向量索引和相似性搜索;Python客户端则提供友好的API接口。通过pip安装时,不仅会安装Python代码,还会自动捆绑Go核心二进制文件和SQLite数据库,实现开箱即用的嵌入式体验。ChromaDB支持两种使用模式:嵌入式模式适合本地开发,客户端/服务器模式适用于生产环境。这种设计巧妙地将高性能的Go核心与易用的Python接口结合,同时通过智能打包机制简化了安装流程,极大提升了开发体验。
2026-01-26 10:17:54
724
原创 一文带大家掌握ChromaDB的核心概念以及基础操作
ChromaDB是一款专为AI应用设计的开源向量数据库,通过简单API实现语义搜索功能。其核心特点包括:1)存储高维向量而非结构化数据;2)基于相似性搜索而非精确匹配;3)擅长处理非结构化数据。架构包含客户端、集合(类似表)、向量、文档和元数据等核心组件。使用时需注意:选择适合的嵌入模型、合理设计元数据、采用持久化存储模式。典型应用场景包括RAG系统、智能推荐等,能有效提升AI应用的语义理解能力。
2026-01-26 10:12:01
708
原创 一文带您了解如何在jenkins中使用HTML Publisher Plugin插件来查看各种测试报告
摘要: HTMLPublisherPlugin是Jenkins的一款插件,用于在构建侧边栏直接展示HTML报告,支持多报告归档与在线查看。它可保留原始报告样式和交互功能,适用于单元测试、代码覆盖率、静态分析等场景。安装后通过publishHTML语法配置,支持参数如reportDir、reportFiles及历史报告保留选项。结合archiveArtifacts使用可实现下载与预览双重功能,推荐生产环境设置allowMissing:false确保报告生成校验,是DevSecOps可视化的关键工具。
2026-01-04 09:54:06
1122
skywalking使用的springboot工程,包括log4j的植入
2024-02-01
Selenium4 PO设计模式源码
2023-12-29
chrome 90.0.4430.72 (Official Build) (64-bit)
2023-08-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅