yarn中container、mr内存的配置,控制container个数

  最近项目在用kylin,在搭建开发环境和测试环境后,然后在kylin上建cube,kylin建cube实际就是调用集群的MR跑任务(也可以调用spark作为引擎),在数据量小或者维度(kylin里面的一个概念)少的时候没问题,后来数据量大或维度多了,就经常出现OOM的问题。
  其实一开始就知道是并行度过高的问题,也尝试过在kylin里面调试,但并没有用。后来通过jps查看yarnchild个数,再到了解containers概念,再到nodemanager资源配置,最后终于知道问题点就在控制containers个数,然后就开始研究到这几个配置项了,这几个配置项影响着每个计算节点上container的个数(Vcore也会影响,本文先不说,就先当vcore是充足的),毕竟这段时间看日志报的都是OOM。


一、nodemanager/ratio

 yarn.nodemanager.resource.memory-mb

  • 集群中某个计算节点分配给nodemanager的最大可用内存,这个最大可用内存不是该节点最大内存,而是该节点最大内存划分出来的给nodemanager使用的内存,
  • 该配置项在集群启动后,无法动态改变。
  • 比如一个节点最大内存为128G,计划给nodemanager80%的内存资源,则设置yarn.nodemanager.resource.memory-mb为103G,其余25G用作该节点其他资源调配ÿ
MR on YARN(MapReduce on Yet Another Resource Negotiator)是一种在Hadoop生态系统中运行MapReduce作业的方式。它的工作原理如下: 1. 提交作业:用户通过客户端向YARN资源管理器(ResourceManager)提交MapReduce作业。作业包括MapReduce程序的代码和配置信息。 2. 资源分配:ResourceManager接收到作业后,将其分解为多个任务(Task),包括Map任务和Reduce任务。然后,ResourceManager根据集群中可用的资源情况,将这些任务分配给不同的节点(NodeManager)执行。 3. 任务执行:每个节点上的NodeManager接收到任务后,会启动一个容器(Container)来执行该任务。容器是一个隔离的执行环境,其中包含了任务所需的资源和环境。 4. Map阶段:在Map阶段,每个Map任务会读取输入数据,并将其划分为多个键值对。然后,Map任务会将这些键值对按照指定的逻辑进行处理,并生成中间结果。 5. Shuffle阶段:在Shuffle阶段,Map任务的中间结果会被分区、排序和分组,以便传输给Reduce任务进行处理。这个过程涉及到数据的排序和网络传输。 6. Reduce阶段:在Reduce阶段,每个Reduce任务会接收到一组经过Shuffle阶段处理的中间结果。Reduce任务会对这些结果进行合并、计算和输出,生成最终的结果。 7. 完成作业:当所有的Map任务和Reduce任务都完成后,作业会被标记为完成,并将最终的结果输出到指定的位置。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值