提供了一种车辆故障预测方法、预测 方法和车辆,涉及车辆技术领域,本发明的车辆 故障预测方法,包括:实时采集车辆的数据并发 送至大数据平台。接收由大数据平台对所述数据 进行清洗和统计分析后的车辆的数据并进行展 示。将车辆是否在此刻或即将发生故障,以及车 辆此刻或即将发生故障的部位和概率输出展示 并报警,本发明的车辆故障预测方法和系统,可 以预测车辆此刻或即将是否会发生故障,已经故 障发生的部位和概率,不需要人为进行逐一排 除,节省时间和人力成本。并且在得到了故障时 就可以直接提醒报警,在真正的事故发生之前提 醒,提高车辆的安全性。
1 .一种车辆故障预测方法,其特征在于,包括: 实时采集车辆的数据并发送至大数据平台,其中,所述数据包括车辆振动数据、车速、 发动机转速、发动机温度、电流、电量和/或胎压; 接收由大数据平台对所述数据进行清洗和统计分析后的所述车辆的数据并进行展示; 将所述车辆是否在此刻或即将发生故障,以及所述车辆此刻或即将发生故障的部位和 概率输出展示并报警,其中,所述车辆此刻或即将发生故障的部位和概率为所述大数据平 台将统计分析后的数据输入到模型得到的。 2 .根据权利要求1所述的车辆故障预测方法,其特征在于, 所述模型包括判别模型,所述判别模型接收所述统计分析后的数据,根据某一时刻的 数据预测所述车辆此刻是否会发生故障,并得到所述车辆此刻会发生故障的部位和概率。 3 .根据权利要求2所述的车辆故障预测方法,其特征在于, 所述模型还包括预测模型,所述预测模型接收所述统计分析后的数据,根据某一时刻 的数据预测下一时刻所述车辆是否将会发生故障,同时得到下一时刻所述车辆将发生故障 的部位和概率。 4 .根据权利要求2或3所述的车辆故障预测方法,其特征在于, 所述车辆振动数据包括所述车辆各部件的振动频率和振动幅度; 对清洗后的数据进行统计分析的步骤包括: 根据所述振动幅度和所述振动频率对所述车辆的振动情况进行分级,统计所述车辆各 部件在各个等级下振动幅度的占比及在各个等级下所述振动频率的占比。 5 .根据权利要求2或3所述的车辆故障预测方法,其特征在于, 所述统计分析后的数据通过BI系统进行展示; 所述BI系统还实时展示所述车辆各部件的振动数据信息、所述车辆是否会发生故障信 息、是否即将发生故障信息以及发生故障或即将发生故障的部位信息。 6 .根据权利要求3所述的车辆故障预测方法,其特征在于, 大数据平台对所述数据进行清洗的步骤包括:通过spark/flink对所述车辆的数据进 行清洗,以除去所述车辆的数据中的异常数据;所述判别模型为XGBoost模型;所述预测模 型为RNN模型,并且在所述RNN模型中引入LSTM模块。 7 .一种车辆,其特征在于,包括: 采集单元,用于实时采集车辆的数据并发送至大数据平台,其中,所述数据包括车辆振 动数据、车速、发动机转速、发动机温度、电流、电量和/或胎压; 展示单元,用于由大数据平台对所述数据进行清洗和接收统计分析后的数据并进行展 示;和 报警单元,用于将所述车辆此刻或将要发生故障的部位和概率输出展示并报警,其中, 所述车辆此刻或将要发生故障的部位和概率为所述大数据平台将统计分析后的数据输入 到模型得到的。 8 .一种车辆故障预测系统,其特征在于,包括权利要求7的车辆和大数据平台,其中,所 述大数据平台包括: 清洗模块,用于接收并清洗所述车辆的数据; 统计分析模块,用于对清洗后的数据进行统计分析; 权 利 要 求 书 1/2 页 2 CN 112558592 A 2 模型模块,用于接收所述将统计分析后的数据并根据所述统计分析后的数据得到所述 车辆是否在此刻或即将发生故障,以及得到所述车辆此刻或即将发生故障的部位和概率。 9 .根据权利要求8所述的车辆故障预测系统,其特征在于, 所述模型模块包括判别模型,所述判别模型用于接收所述统计分析后的数据,根据某 一时刻的数据预测所述车辆此刻是否会发生故障,并得到所述车辆发生故障的部位和概 率。 10 .根据权利要求8或9所述的车辆故障预测系统,其特征在于, 所述模型模块还包括预测模型,所述预测模型用于接收所述统计分析后的数据,根据 某一时刻的数据预测下一时刻所述车辆是否将会发生故障,同时得到下一时刻所述车辆将 发生故障的部位和概率。 权 利 要 求 书 2/2 页 3 CN 112558592 A 3 车辆故障预测方法、预测系统及车辆 技术领域 [0001] 本发明涉及车辆技术领域,特别是涉及一种车辆故障预测方法、预测系统及车辆。 背景技术 [0002] 通过对网络用户的大数据分析发现,其中用户普遍在抱怨三缸发动机随着使用时 间的变化,发动机的抖动情况会显著增加。目前常采用的是根据用户的感知,不断的排查判 断车辆故障抖动的原因,非常浪费时间和人力成本,且排查困难。此外,即便逐一排查,由于 试验过程中是否抖动完全由试验人员自行进行主观判断,当试验不充分、或者测试工况不 全面或者驾驶员敏感性不足时,有可能将整车轻微的抖动带到量产引起客户抱怨。 发明内容 [0003] 本发明的第一方面的一个目的是要提供
技术领域 [0001] 本发明涉及车辆技术领域,特别是涉及一种车辆故障预测方法、预测系统及车辆。 背景技术 [0002] 通过对网络用户的大数据分析发现,其中用户普遍在抱怨三缸发动机随着使用时 间的变化,发动机的抖动情况会显著增加。目前常采用的是根据用户的感知,不断的排查判 断车辆故障抖动的原因,非常浪费时间和人力成本,且排查困难。此外,即便逐一排查,由于 试验过程中是否抖动完全由试验人员自行进行主观判断,当试验不充分、或者测试工况不 全面或者驾驶员敏感性不足时,有可能将整车轻微的抖动带到量产引起客户抱怨。 发明内容 [0003] 本发明的第一方面的一个目的是要提供一种车辆故障预测方法,解决现有技术中 需要实验员逐一排查车辆故障问题导致资源浪费的问题。 [0004] 本发明的第一方面的另一个目的是解决现有技术中无法预测车辆故障的问题。 [0005] 本发明的第二方面的目的是提供一种车辆,解决现有技术中需要实验员逐一排查 车辆故障问题导致资源浪费的问题; [0006] 本发明的第三方面的目的是提供一种车辆故障预测系统。 [0007] 特别地,本发明提供一种车辆故障预测方法,包括: [0008] 实时采集车辆的数据并发送至大数据平台,其中,所述数据包括车辆振动数据、车 速、发动机转速、发动机温度、电流、电量和/或胎压; [0009] 接收由大数据平台对所述数据进行清洗和统计分析后的所述车辆的数据并进行 展示; [0010] 将所述车辆是否在此刻或即将发生故障,以及所述车辆此刻或即将发生故障的部 位和概率输出展示并报警,其中,所述车辆此刻或即将发生故障的部位和概率为所述大数 据平台将统计分析后的数据输入到模型得到的。 [0011] 可选地,所述模型包括判别模型,所述判别模型接收所述统计分析后的数据,根据 某一时刻的数据预测所述车辆此刻是否会发生故障,并得到所述车辆此刻会发生故障的部 位和概率。 [0012] 可选地,所述模型还包括预测模型,所述预测模型接收所述统计分析后的数据,根 据某一时刻的数据预测下一时刻所述车辆是否将会发生故障,同时得到下一时刻所述车辆 将发生故障的部位和概率。 [0013] 可选地,所述车辆振动数据包括所述车辆各部件的振动频率和振动幅度; [0014] 对清洗后的数据进行统计分析的步骤包括: [0015] 根据所述振动幅度和所述振动频率对所述车辆的振动情况进行分级,统计所述车 辆各部件在各个等级下振动幅度的占比及在各个等级下所述振动频率的占比。 [0016] 可选地,所述统计分析后的数据通过BI系统进行展示; 说 明 书 1/6 页 4 CN 112558592 A 4 [0017] 所述BI系统还实时展示所述车辆各部件的振动数据信息、所述车辆是否会发生故 障信息、是否即将发生故障信息以及发生故障或即将发生故障的部位信息。 [0018] 可选地,大数据平台对所述数据进行清洗的步骤包括:通过spark/flink对所述车 辆的数据进行清洗,以除去所述车辆的数据中的异常数据;所述判别模型为XGBoost模型; 所述预测模型为RNN模型,并且在所述RNN模型中引入LSTM模块。 [0019] 特别地,本发明还提供一种车辆,包括: [0020] 采集单元,用于实时采集车辆的数据并发送至大数据平台,其中,所述数据包括车 辆振动数据、车速、发动机转速、发动机温度、电流、电量和/或胎压; [0021] 展示单元,用于由大数据平台对所述数据进行清洗和接收统计分析后的数据并进 行展示;和 [0022] 报警单元,用于将所述车辆此刻或将要发生故障的部位和概率输出展示并报警, 其中,所述车辆此刻或将要发生故障的部位和概率为所述大数据平台将统计分析后的数据 输入到模型得到的。 [0023] 特别地,本发明还提供一种车辆故障预测系统,包括上述的车辆和大数据平台,其 中,所述大数据平台包括: [0024] 清洗模块,用于接收并清洗所述车辆的数据; [0025] 统计分析模块,用于对清洗后的数据进行统计分析; [0026] 模型模块,用于接收所述将统计分析后的数据并根据所述统计分析后的数据得到 所述车辆是否在此刻或即将发生故障,以及得到所述车辆此刻或即将发生故障的部位和概 率。 [0027] 可选地,所述模型模块包括判别模型,所述判别模型用于接收所述统计分析后的 数据,根据某一时刻的数据预测所述车辆此刻是否会发生故障,并得到所述车辆发生故障 的部位和概率。 [0028] 可选地,所述模型模块还包括预测模型,所述预测模型用于接收所述统计分析后 的数据,根据某一时刻的数据预测下一时刻所述车辆是否将会发生故障,同时得到下一时 刻所述车辆将发生故障的部位和概率。 [0029] 本发明的车辆故障预测方法和系统,根据检测到的车辆的数据,对数据进行统计 分析后输入到模型中,通过模型的算法,可以直接得到车辆是否在此刻或即将发生故障以 及发生故障的部位和概率,不需要人为进行逐一排除,节省时间和人力成本。并且在得到了 车辆在此刻或即将发生故障时就可以直接提醒报警,在真正的事故发生之前提醒,提高车 辆的安全性。 [0030] 本发明的车辆故障预测系统包括大数据平台,该大数据平台主要对车辆采集到的 数据进行清洗,统计分析和判别,得到车辆的故障位置和概率,保证了数据分析的准确性, 提高了对车辆的故障判别和预测的准确性,从而提高用户体验。 [0031] 根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明 了本发明的上述以及其他目的、优点和特征。
具体实施方式 [0039] 图1是根据本发明一个实施例的车辆故障预测方法的示意性流程图。本实施例提 供一种车辆故障预测方法,该车辆故障预测方法可以包括: [0040] S10实时采集车辆的数据并发送至大数据平台,其中,数据包括车辆振动数据、车 速、发动机转速、发动机温度、电流、电量和/或胎压; [0041] S20接收由大数据平台对所述数据进行清洗和统计分析后的车辆的数据并进行展 示,其中,数据先传递到大数据平台上进行清洗,再在大数据平台上对清洗后的数据进行统 计分析; [0042] S30将车辆是否在此刻或即将发生故障,以及车辆此刻或即将发生故障的部位和 概率输出展示并报警,其中,所述车辆此刻或即将发生故障的部位和概率为大数据平台将 统计分析后的数据输入到模型得到的。 [0043] 正常情况下,由于车辆数据的采集和传递是一个周期性的过程,因此本实施例中 “此刻”代表在本采集周期内的数据计算得到的结果。而本实施例中的“即将”则代表通过本 采集周期的数据计算和预测下一检测周期的故障等情况。 [0044] 具体地,先将振动传感器安装在发动机、车身、底盘及重要零部件的位置。将振动 传感器安装在车辆的四周及周边可以根据不同的位置的振动传感器的振动幅度与频率来 判断道路的情况,例如,颠簸程度。安装在车身的振动传感器的振动幅度可以检测不同的振 动对用户的影响,更能表现出对人的影响程度。安装在发动机上的振动传感器可以检测发 动机的抖动情况。安装在尾气管的振动传感器则可以检测是否是尾气管处的积碳导致的振 动,同时重要的振动位置能够实时表现对人体的影响。此外,车辆上本身就具有的一些传感 器可以检测到车辆的振动数据、车速、发动机转速、发动机温度、电流、电量和/或胎压等,这 些都是可以预测到车辆故障的数据。 [0045] 本实施例的车辆故障预测方法,根据检测到的车辆的数据,对数据进行统计分析 后输入到模型中,通过模型的算法,可以直接得到车辆是否在此刻或即将发生故障以及发 生故障的部位和概率,不需要人为进行逐一排除,节省时间和人力成本。并且在得到了车辆 在此刻或即将发生故障时就可以直接提醒报警,在真正的事故发生之前提醒,提高车辆的 安全性。 [0046] 作为本发明一个具体地实施例,本实施例所述的模型包括判别模型,判别模型接 收统计分析后的数据,根据某一时刻的数据预测车辆此刻是否会发生故障,并得到车辆此 刻会发生故障的部位和概率。 说 明 书 3/6 页 6 CN 112558592 A 6 [0047] 本实施例的判别模型主要是对车辆的数据进行此刻的故障的判断,从而保障车辆 在故障发生前就知晓其故障发生的概率和部位,增加车辆的安全性。作为本发明另一个实 施例,本实施例的模型还包括预测模型。该预测模型接收统计分析后的数据,根据某一时刻 的数据预测下一时刻车辆是否将会发生故障,同时得到下一时刻车辆将发生故障的部位和 概率。 [0048] 本实施例通过将分析后的数据输入到预测模型中,通过当前检测到的车辆的数据 预测下一时刻(即前面所述的“即将”)的车辆是否有故障,以及故障的发生位置和概率,提 前提醒用户,且可以根据预测的结果,提前进行故障维修,保证车辆的安全性。 [0049] 作为本发明一个具体地实施例,车辆振动数据包括车辆各部件的振动频率和振动 幅度; [0050] 对清洗后的数据进行统计分析的步骤包括: [0051] 根据振动幅度和振动频率对车辆的振动情况进行分级,统计车辆各部件在各个等 级下振动幅度的占比及各个等级下振动频率的占比。
[0054] 上述对于振动频率和振动幅度的等级划分是按照实际经验值进行划分。后续在接 收到的数据逐渐增多后,可以根据大数据分析进行具体的划分。因各个部件的频率会有所 不同,所以后期会根据无监督的方式,对于各个不同部位的振动频率以及振动幅度做调整。 [0055] 作为本发明一个具体地实施例,统计分析后的数据通过BI系统进行展示。BI系统 还实时展示车辆各部件的振动数据信息、车辆是否会发生故障信息、是否即将发生故障以 及发生故障信息或即将发生故障的部位信息。 [0056] 具体地,BI系统是商业智能(Business Intelligence)软件的英文缩写。它是一套 完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出 决策依据,帮助企业做出明智的业务经营决策。 [0057] 本实施例就利用BI系统将这些数据进行展示是为了能够更好的提示用户,进一步 提高车辆的安全性。 [0058] 作为本发明一个具体地实施例,大数据平台对所述数据进行清洗的步骤包括:通 过spark/flink对车辆的数据进行清洗,以除去车辆的数据中的异常数据。将异常数据(如 过大的数据、过小的数据,明显异常的数据)去除是为了能够更好的进行数据分析,得到分 析后的数据更精确,保证后续输入到模型得到的结果更准备,避免误报警。 [0059] 图2是根据本发明的一个实施例的判别模型的进行判别时的流程图;作为本发明 一个具体地实施例,判别模型为XGBoost模型。判别模型是根据历史数据,判别是否发生故 障。通过对分析后的数据,建立深度学习的判别模型。根据判别模型可以立刻知道振动故障 以及振动部位;根据实时传输过来的数据,通过XGBoost模型,判断汽车是否故障及故障部 说 明 书 4/6 页 7 CN 112558592 A 7 位。 [0060] 数据源包括车速、发动机转速、发动机温度、电流、电量、胎压、及车身、底盘、轮胎、 座位等。振动传感器中振动幅度数据的最大值、最小值和平均值。单位时间的振幅占比、频 率占比等。将数据拆分成训练集和测试集以及验证集数据。 [0061] 将训练集数据通过XGBoost等机器学习模型训练模型,测试集数据测试模型,验证 集数据验证模型 ,得到最优模型。当数据通过Flink统计传输到模型之后,输出发生故障的 概率及故障的部位,如果没有发生故障则为‑ ,输出的demo如下:{0 .07 ,‑} ,{0 .03 ,‑} ,{0 .9 , 发动机} ,{0 .8 ,发动机},具体地如图2所示。 [0062] 图3是根据本发明的一个实施例的预测模型的进行预测时的流程图;预测模型为 RNN模型,并且在RNN模型中引入LSTM模块。预测模型是根据时间序列数据;通过预测模型可 以提前知道轻微的故障。当发生故障的前一点征兆中就能知道某些部位可能存在故障;主 要通过RNN模型是实现。针对前一个时刻的数据输入来预测下一个时间段的数据情况,在 RNN中引入LSTM模块,通过引入LSTM模块,使得训练速度更快,比RNN的训练准确度更高。其 中,RNN模型主要输入的数据包括:发动机温度,胎压,发动机转速,振动传感器数据等等。具 体预测的特征流程如图3所示。 [0063] 图4是根据本发明一个实施例的车辆的示意性框图;作为本发明一个具体地实施 例,本发明还提供一种车辆100,该车辆100可以包括采集单元10、展示单元20和报警单元 30。其中,采集单元10用于实时采集车辆的数据并发送至大数据平台,其中,数据包括车辆 的振动数据、车速、发动机转速、发动机温度、电流、电量和/或胎压。展示单元20用于由大数 据平台对数据进行清洗和接收统计分析后的数据并进行展示,其中,数据先传递到大数据 平台上进行清洗,再在大数据平台上对清洗后的数据进行统计分析。报警单元30用于将所 述车辆此刻或将要发生故障的部位和概率输出展示并报警,其中,所述车辆此刻或将要发 生故障的部位和概率为所述大数据平台将统计分析后的数据输入到模型得到的。本实施例 的展示单元20可以是车辆的多媒体电子显示屏。在多媒体电子显示屏上显示BI系统。报警 单元30则可以是声光电报警器,在报警的同时可以进行语音提示。 [0064] 本实施例的车辆根据检测到的车辆的数据,对数据进行统计分析后输入到判别模 型中,通过判别模型的算法,可以直接得到车辆是否在此刻或即将发生故障以及发生故障 的部位和概率,不需要人为进行逐一排除,节省时间和人力成本。并且在得到了故障时就可 以直接提醒报警,在真正的事故发生之前提醒,提高车辆的安全性。 [0065] 图6是根据本发明一个实施例的车辆故障预测系统的示意性框图; [0066] 作为本发明一个具体地实施例,本发明还提供一种车辆故障预测系统300,该车辆 故障预测系统300可以包括上面的车辆100和大数据平台200,其中,大数据平台200可以包 括清洗模块210、统计分析模块220和模型模块230。其中,清洗模块210用于接收并清洗车辆 的数据。统计分析模块220用于对清洗后的数据进行统计分析。模型模块230用于接收统计 分析后的数据并根据统计分析后的数据得到车辆是否在此刻或即将发生故障,以及得到车 辆此刻或即将发生故障的部位和概率。 [0067] 本实施例中的模型模块230可以包括判别模型231,判别模型用于接收统计分析后 的数据,根据某一时刻的数据预测所述车辆此刻是否会发生故障,并得到所述车辆发生故 障的部位和概率。 说 明 书 5/6 页 8 CN 112558592 A 8 [0068] 本实施例的模型模块230还可以包括预测模型232,预测模型用于接收统计分析后 的数据,根据某一时刻的数据预测下一时刻车辆是否将会发生故障,同时得到下一时刻车 辆将发生故障的部位和概率。 [0069] 本实施例的车辆故障预测系统不仅可以预测到车辆此刻是否会发生故障,还可以 预测下一时刻车辆是否将会发生故障。当车辆可能在此刻或即将发生故障时,则将预测到 的车辆会发生故障的部位和概率输出展示并报警。提前报警提醒用户,且可以根据预测的 结果,提前进行故障维修,保证车辆的安全性。在大数据平台得到了故障的部位、概率等情 况后,在输出到车辆的报警单元30的同时还可以将故障类型上报4S店 ,同时告知用户车辆 可能发生的故障及故障类型。当汽车维修的时候 ,可以通过系统立刻知道哪里故障比较严 重 ,以及推荐维修的部位。 [0070] 本实施例的车辆故障预测系统300包括大数据平台200,该大数据平台200主要对 车辆采集到的数据进行清洗,统计分析和判别,得到车辆的故障位置和概率,保证了数据分 析的准确性,提高了对车辆的故障判别和预测的准确性,从而提高用户体验。 [0071] 至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示 例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接 确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认 定为覆盖了所有这些其他变型或修改。