python相关分析和关联分析

本文探讨了Python中相关分析的各种方法,包括相关系数的显著性检验、偏相关分析、点二列相关分析以及非参数相关分析。在相关分析中,强调了相关关系的特性,如非传递性和方向性无关。在关联分析部分,提到了如何处理连续变量与分类变量的关系,以及使用如FP-growth算法处理0-1型数据的需求。
摘要由CSDN通过智能技术生成

相关分析

函数关系:

相关关系:影响不存在方向性,比如身高越高体重越重,但不能说身高增加1cm体重增加2kg

相关分析不具有传递性,A和C相关,B和C相关,A和B不一定相关

相关系数的显著性检验

#1.两两相关性[有相关系数有p值]
correlation=[]
for I in car_corr[['weight','circle','horsepower']].columns:
    correlation.append(stats.pearsonr(car_corr['max_speed'],car_corr[I]))
#1.2 仅有p值
from sklearn.feature_selection import f_regression
F,P_value=f_regression(car_corr[['weight','circle','horsepower']],car_corr['max_speed'])
#2. df的相关系数矩阵[只有相关系数,没有p值]
car_corr[['weight','circle','horsepower','Max_speed']].corr()
#2.2
np.corrcoef((car_corr['Weight'],car_corr['circle'],car_corr['horsepower'],car_corr['Max_speed']))

偏相关分析 

发动机作为汽车的心脏,对各项指标有影响。因此,在研究其他指标和最高时速指标之间的相关关系是,会不知不觉在变量之间加入发动

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值