数据不平衡问题

数据不平衡解决之道

一、从数据本身出发

1.欠采样

2.过采样

以SMOTE为例子

 

 

 

3.数据增强:加噪音增强模型鲁棒性、对不同性质的数据也可以做不同的augmentation

4.改变权重:设定惩罚因子,如libsvm等算法里设置的正负样本的权重项等。惩罚多样本类别,其实还可以加权少样本类别

 

评价指标详情见:https://blog.csdn.net/kylin_learn/article/details/81938945

树模型:它使用基于类变量的划分规则去创建分类树,因此可以强制地将不同类别的样本分开(有待理解)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值