关于算法的学习(1)

 Chapter 1 算法的概念

    算法:定义良好的计算过程。是一系列的计算步骤。

    机器学习:研究计算机如何模拟或实现人类的学习行为,以获取新的知识或技能

     机器学习要素:特征工程(特征的提取,转换,选择),有监督学习(分类,回归),无监督学习(聚类)

    数据挖掘:从大量数据中通过算法搜索隐藏与其中的信息的过程。机器学习的更深一层。 

    数据挖掘重点掌握:线性代数,概率论与数理统计 

    学习要素:

  1.   数据预处理
  2.   分类(决策树,最近邻,svm,贝叶斯)
  3.   聚类(基于距离,基于密度,基于图,基于概率)
  4.  关联规则(Apriori)例:在搜索引擎上打错字
  5.  离群点检测       


             

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值