【面向代码】学习 Deep Learning(四) Stacked Auto-Encoders(SAE)

今天介绍的呢是DL另一个非常重要的模型:SAE

把这个放在最后来说呢,主要是因为在UFLDL tutorial 里已经介绍得比较详细了,二来代码非常简单(在NN的基础之上)

先放一张autoencoder的基本结构:

基本意思就是一个隐藏层的神经网络,输入输出都是x,属于无监督学习

==========================================================================================

基本代码

saesetup.m

[cpp]  view plain copy
  1. function sae = saesetup(size)  
  2.     for u = 2 : numel(size)  
  3.         sae.ae{u-1} = nnsetup([size(u-1) size(u) size(u-1)]);  
  4.     end  
  5. end  

saetrain.m

[cpp]  view plain copy
  1. function sae = saetrain(sae, x, opts)  
  2.     for i = 1 : numel(sae.ae);  
  3.         disp(['Training AE ' num2str(i) '/' num2str(numel(sae.ae))]);  
  4.         sae.ae{i} = nntrain(sae.ae{i}, x, x, opts);  
  5.         t = nnff(sae.ae{i}, x, x);  
  6.         x = t.a{2};  
  7.         %remove bias term  
  8.         x = x(:,2:end);  
  9.     end  
  10. end  

其实就是每一层一个autoencoder,隐藏层的值作为下一层的输入


各类变形

    为了不致于本文内容太少。。。现在单独把它的几个变形提出来说说

  sparse autoencoder:

   

   这就是ufldl讲的版本,toolbox中的代码和ufldl中练习的部分基本一致:

   在nnff.m中使用:nn.p{i} = 0.99 * nn.p{i} + 0.01 * mean(nn.a{i}, 1);计算

   在nnbp.m中使用

     pi = repmat(nn.p{i}, size(nn.a{i}, 1), 1); 

     sparsityError = [zeros(size(nn.a{i},1),1) nn.nonSparsityPenalty * (-nn.sparsityTarget ./ pi + (1 - nn.sparsityTarget) ./ (1 - pi))];

   计算sparsityError即可

 denoising autoencoder:

   denoising其实就是在autoencoder的基础上,给输入的x加入噪声,就相当于dropout用在输入层

   toolbox中的也实现非常简单:

   在nntrain.m中:

      batch_x = batch_x.*(rand(size(batch_x))>nn.inputZeroMaskedFraction)

   也就是随即把大小为(nn.inputZeroMaskedFraction)的一部分x赋成0,denoising autoencoder的表现好像比sparse autoencoder要强一些

Contractive Auto-Encoders:

   这个变形呢是《Contractive auto-encoders: Explicit invariance during feature extraction》提出的

   这篇论文里也总结了一下autoencoder,感觉很不错

    Contractive autoencoders的模型是:

     

    其中:

       hj是表示hidden layer的函数,用它对x求导

    论文里说:这个项是

         encourages the mapping to the feature space to be contractive in the neighborhood of the training data

     具体的实现呢是:

        

     代码呢参看:论文作者提供的:点击打开链接

      主要是

jacobian(self,x):

_jacobi_loss():

_fit_reconstruction():

这几个函数和autoencoder有出入,其实也比较简单,就不细讲了

总结:


总的来说,autoencoder感觉是DL中比较好理解的一部分,所以介绍内容不长
可能你也发现了,Toolbox里还有一个文件夹叫CAE,不过这个CAE是Convolutional Auto-Encoders
参考 http://www.idsia.ch/~ciresan/data/icann2011.pdf ,以后有时间再学习一下~
Deep Learning Toolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。 对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。 了解深度学习工具箱的基础知识 深度学习图像 从头开始训练卷积神经网络或使用预训练网络快速学习新任务 使用时间序列,序列和文本进行深度学习 为时间序列分类,回归和预测任务创建和训练网络 深度学习调整和可视化 绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能 并行和云中的深度学习 通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络 深度学习应用 通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程 深度学习导入,导出和自定义 导入和导出网络,定义自定义深度学习图层以及自定义数据存储 深度学习代码生成 生成MATLAB代码或CUDA ®和C ++代码和部署深学习网络 函数逼近和聚类 使用浅层神经网络执行回归,分类和聚类 时间序列和控制系统 基于浅网络的模型非线性动态系统; 使用顺序数据进行预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值