linux多线程-互斥&条件变量与同步 多线程代码问题描述我们都知道,进程是操作系统对运行程序资源分配的基本单位,而线程是程序逻辑,调用的基本单位。在多线程的程序中,多个线程共享临界区资源,那么就会有问题:比如#include <pthread.h>#include <unistd.h>#include <stdio.h>#include <stdlib.h>i...
linux多线程-互斥&条件变量与同步 多线程代码问题描述我们都知道,进程是操作系统对运行程序资源分配的基本单位,而线程是程序逻辑,调用的基本单位。在多线程的程序中,多个线程共享临界区资源,那么就会有问题:比如#include <pthread.h>#include <unistd.h>#include <stdio.h>#include <stdlib.h>i...
Tensorflow一些常用基本概念与函数 摘要:本文主要对tf的一些常用概念与方法进行描述。1、tensorflow的基本运作为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始:import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.placeholder("float") b = tf.placeholder("float") y = tf.mul(a, b
解决 NotImplementedError: fromstring() has been removed. Please call frombytes() instead. 1. 可能Pillow版本不对,运行命令:pip uninstall Pillowpip install Pillow==2.9.0 或者wget https://pypi.python.org/packages/62/7d/a6decd77e926197621ca13f63e4f37333a462e1be18a8b5928b692f7ae24/Pillow-2.9.0.tar
Models in TensorFlow from GitHub 转载网址:http://note.youdao.com/share/?id=71216576910b7a6cd6f2a0f2ebf8faa2&type=note#/ —— 感谢AI研习社的分享Models in TensorFlow from GitHub图像处理/识别 1.PixelCNN &PixelRNN in TensorFlowTensorFlo
llinux 下查看文件个数及大小 查看文件个数 ls -l |grep "^-"|wc -l或find ./company -type f | wc -l查看某文件夹下文件的个数,包括子文件夹里的。ls -lR|grep "^-"|wc -l查看某文件夹下文件夹的个数,包括子文件夹里的。ls -lR|grep "^d"|wc -l说明:ls -l长列表输出该目录下文件信息(注意这
linux下文件夹的创建、复制、剪切、重命名、清空和删除命令 在home目录下有wwwroot目录,wwwroot下有sinozzz目录,即/home/wwwroot/sinozzz一、目录创建在/home/wwwroot目录下新建一个sinozzz123的文件夹mkdir /home/wwwroot/sinozzz123二、目录复制1.把/home/wwwroot/sinozzz里面的文件和文件夹等复制到home/w
分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error 提纲:分类模型 与 Loss 函数的定义,为什么不能用 Classification Error,Cross Entropy 的效果对比,为什么不用 Mean Squared Error,定量理解 Cross Entropy,总结,参考资料。交叉熵定义:http://blog.csdn.net/lanchunhui/article/detai
TensorFlow运作方式入门 用到的py文件1. mnist.py# Copyright 2015 The TensorFlow Authors. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compli
tensorflow---深入MNIST 深入MNIST用到py文件import tensorflow as tf#导入input_data用于自动下载和安装MNIST数据集from tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
tensorflow-MNIST机器学习入门 py文件import tensorflow.examples.tutorials.mnist.input_data as input_datamnist = input_data.read_data_sets("MNIST_data/", one_hot=True)import tensorflow as tfx = tf.placeholder(tf.float32, [No
Tensorboard学习——mnist_with_summaries.py ---- TensorFlow可视化 mnist_with_summaries.py如下:# Copyright 2015 Google Inc. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance
Vim光标移动命令 行首: home键行尾: end键 删除n行: ndd*定位到指定行n: 输入"nG". 或输入"ngg". 或输入":n" 这里,n就是指定的行的行号.注意,有时候G=gg. *跳到屏幕顶部: 输入“H”. 这里,停在第一个非空字符上。加一个数字N,是指距窗口顶部的行数(如'NH'正数第N行) *跳到屏幕底部:
深度对抗学习在图像分割和超分辨率中的应用 深度学习已经在图像分类、检测、分割、高分辨率图像生成等诸多领域取得了突破性的成绩。但是它也存在一些问题。首先,它与传统的机器学习方法一样,通常假设训练数据与测试数据服从同样的分布,或者是在训练数据上的预测结果与在测试数据上的预测结果服从同样的分布。而实际上这两者存在一定的偏差,比如在测试数据上的预测准确率就通常比在训练数据上的要低,这就是过度拟合的问题。另一个问题是深度学习的模型(比如卷积神经
Ubuntu台式机有线没法上网 1. ubuntu有线无法上网,使用ifconfig没看到有线网卡,证明没有驱动2. 使用lspci查看所有驱动,找到Ethernet controller: 那个,为以太网驱动,到官网查找、我的为Ethernet controller: Intel Corporation Device 15b7 (rev 31) https://downloadcenter.intel.co
win7和Ubuntu双系统卸载Ubuntu 第1步,修复MBR 1.进入win7,下载个软件MbrFix,放在C:\windows\system32文件夹中 2.点击开始》所有程序》附件》命令提示符 3.在命令提示符中输入MbrFix /drive 0 fixmbr /yes 4.此时已经修复了MBR,重启电脑后会发现已经没有了linux启动选项,直接进入windows了(此步检验仍然存在linux启
WIN7系统下U盘安装Ubuntu双系统 一、软件准备1.一个格式化了的U盘2.下载ubuntu镜像,我下的是ubuntukylin-14.04-desktop-amd64.iso3.下载unetbootin-windows-latest.exe,用这个软件把U盘做成启动盘,超简单。(网盘地址:http://pan.baidu.com/s/1qWGvj3Y)二、分一个空磁盘给Ubuntu步骤:在桌面或开始菜单里
Precision和Recall 原文出自:http://blog.csdn.net/wangran51/article/details/7579100最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇到,知道意思,但是有时候要很清晰地向同学介绍则有点转不过弯来。召回率和准确率是数据挖掘中预测、互联网中的搜索引擎等经常涉及的两个概念和指标。召回率:Recall,又称“查全率”
最清晰的张正友标定法 此处“张正友标定”又称“张氏标定”,是指张正友教授于1998年提出的单平面棋盘格的摄像机标定方法。张氏标定法已经作为工具箱或封装好的函数被广泛应用。张氏标定的原文为“A Flexible New Technique forCamera Calibration”。此文中所提到的方法,为相机标定提供了很大便利,并且具有很高的精度。从此标定可以不需要特殊的标定物,只需要一张打印出来的棋盘格。So gre