【数据分析】销售案例——移动平均值

本文介绍如何使用移动平均法处理历史销售数据,通过消除不规则波动,展现销售整体趋势并预测未来走向。通过构建日期表,计算15天及60天移动平均,为销售策略提供数据支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理

对前期历史数据进行平均消除不规则影响呈现整体发展趋势,根据趋势预测未来走向。
eg:股票均线

拆表

在这里插入图片描述

现状

正常情况下,一家店铺,日均销售都会在一个区间范围内,比如60000至130000 但是这之间差距达到了70000

在这里插入图片描述

建表

日期表 = SUMMARIZECOLUMNS(‘销售表’[日期])
总金额 = SUM(‘销售表’[销售金额])
在这里插入图片描述

dates in period

从现在数多少天(‘表’【列】,min表列,往前多少,天/月)

15天移动平均 = AVERAGEX(DATESINPERIOD(‘销售表’[日期],MIN(‘销售表’[日期]),-15,DAY),[总金额])
通过移动平均值看总体走势
在这里插入图片描述

60天移动平均 = AVERAGEX(DATESINPERIOD(‘销售表’[日期],MIN(‘销售表’[日期]),-60,DAY),[总金额])
在这里插入图片描述

建模

建立模拟参数
在这里插入图片描述
【度量值】
动态移动平均——假设 = AVERAGEX(DATESINPERIOD(‘销售表’[日期],MIN(‘销售表’[日期]),[动态平衡参数 值],DAY),[总销售额])

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值