前言
大学物理的复习
主要是自己总结下
如有谬误
多多包涵
正文
在相对论中,我们假定时间和空间都不是绝对的
只有光速恒定不变为
3
∗
1
0
8
(
m
/
s
)
3*10^8(m/s)
3∗108(m/s)
对于高速运动的参考系(假定该参考系相对于静止参考系沿
x
x
x正半轴以恒定速度
u
(
m
/
s
)
u(m/s)
u(m/s)的速度移动)
那么相对于静止参考系,则有以下等式成立
Δ
t
=
Δ
t
′
1
−
u
2
/
c
2
\Delta t=\frac{{\Delta t}'}{\sqrt{1-u^2/c^2}}\\
Δt=1−u2/c2Δt′
l
=
l
′
1
−
u
2
/
c
2
l=l'\sqrt{1-u^2/c^2}
l=l′1−u2/c2
值得注意的是在上述式子中
Δ
t
′
{\Delta t}'
Δt′和
l
′
l'
l′指的分别是固有时和固有长度
有关二者的定义,理解如下:
对于一件事情,开始和结束的时候以此参考系为标准,地点不变的,在这个参考系中的时间就是固有时,观测到的长度就是固有长度
或者说,能观测到最短的时间就是固有时,能观测到的最长长度就是固有长度
接着来看洛伦兹变换
先回顾下伽利略变换
坐标变换:
x
′
=
x
−
u
t
,
y
′
=
y
,
z
′
=
z
,
t
′
=
t
速度变换:
v
x
′
=
v
x
−
u
,
v
y
′
=
v
y
,
v
z
′
=
v
z
坐标变换:x'=x-ut,y'=y,z'=z,t'=t\\ 速度变换:v_x'=v_x-u,v_y'=v_y,v_z'=v_z
坐标变换:x′=x−ut,y′=y,z′=z,t′=t速度变换:vx′=vx−u,vy′=vy,vz′=vz
根据相对论的假定,我们可以得出在高速运动的参考系中的坐标以及速度变换
x
′
=
x
−
u
t
1
−
u
2
/
c
2
,
y
′
=
y
,
z
′
=
z
t
′
=
t
−
u
c
2
x
1
−
u
2
/
c
2
x'=\frac{x-ut}{\sqrt{1-u^2/c^2}},y'=y,z'=z\\ t'=\frac{t-\frac{u}{c^2}x}{\sqrt{1-u^2/c^2}}
x′=1−u2/c2x−ut,y′=y,z′=zt′=1−u2/c2t−c2ux
v
x
′
=
v
x
−
u
1
−
u
v
x
c
2
,
v
y
′
=
v
y
−
u
1
−
u
v
y
c
2
1
−
u
2
/
c
2
,
v
z
′
=
v
z
−
u
1
−
u
v
z
c
2
1
−
u
2
/
c
2
v_x'=\frac{v_x-u}{1-\frac{uv_x}{c^2}},v_y'=\frac{v_y-u}{1-\frac{uv_y}{c^2}}\sqrt{1-u^2/c^2},v_z'=\frac{v_z-u}{1-\frac{uv_z}{c^2}}\sqrt{1-u^2/c^2}
vx′=1−c2uvxvx−u,vy′=1−c2uvyvy−u1−u2/c2,vz′=1−c2uvzvz−u1−u2/c2
再次值得注意的是上面式子中,我们假定:
- 在 t = 0 t=0 t=0时,两个坐标系完全重合
- u u u代表坐标系的速度, v v v代表物体的速度,这里的速度都是相对于原坐标系的
- 我们算出来的 v v v是不可能大于等于光速的
接下来是相对论的质量、动量和能量
-
质量:对于处在v速度运动的物体,我们认为其质量为
m = m 0 1 − v 2 / c 2 m=\frac{m_0}{\sqrt{1-v^2/c^2}} m=1−v2/c2m0
(当v趋于c的时候,m趋近于0) -
动量:将相对论中的质量 m m m带入就可以得到
p = m v = m 0 v 1 − v 2 / c 2 p=mv=\frac{m_0v}{\sqrt{1-v^2/c^2}} p=mv=1−v2/c2m0v
在同一个参考系中,动量一直都是守恒的 -
能量
在相对论中,在一个固定的参考系里,一个质量为 m m m的物体(在静止参考系中质量是 m 0 m_0 m0)能量为
E = m c 2 E=mc^2 E=mc2
其动能为
E k = E = E 0 = m c 2 − m 0 c 2 E_k=E=E_0=mc^2-m_0c^2 Ek=E=E0=mc2−m0c2
由此我们可以得到以下关系式
E
2
=
p
2
c
2
+
m
0
2
c
4
E^2=p^2c^2+m_0^2c^4
E2=p2c2+m02c4
先写到这