高数一(下册)复习

需要记忆的一些公式

∫ 0 π 2 cos ⁡ n x d x = ∫ 0 π 2 sin ⁡ n x d x \int_{0}^{\frac{\pi}{2}} \cos^{n}x\mathrm{d}x=\int_{0}^{\frac{\pi}{2}} \sin^{n}x\mathrm{d}x 02πcosnxdx=02πsinnxdx
x 为偶数: π ( n − 1 ) ! ! 2 n ! ! x为偶数:\frac{\pi(n-1)!!}{2n!!} x为偶数:2n!!π(n1)!!
x 为奇数: ( n − 1 ) ! ! n ! ! x为奇数:\frac{(n-1)!!}{n!!} x为奇数:n!!(n1)!!
∫ 0 + ∞ e − x 2 d x = π 2 \int_{0}^{+\infty} e^{-x^2}\mathrm{d}x=\frac{\sqrt\pi}{2} 0+ex2dx=2π

积分

重积分

基本的不讲了,讲讲换元

二重积分

先是二重积分的
∫ ∫ D f ( x , y ) d x d y = ∫ ∫ D ′ f ( x ( u , v ) , y ( u , v ) ) ∣ J ∣ d u d v {\int\int}_{D} f(x,y)\mathrm{d}x\mathrm{d}y={\int\int}_{D'}f(x(u,v),y(u,v))|J|\mathrm{d}u\mathrm{d}v ∫∫Df(x,y)dxdy=∫∫Df(x(u,v),y(u,v))Jdudv
其中
J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ J=\frac{\partial(x,y)}{\partial(u,v)} =\begin{vmatrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{vmatrix} J=(u,v)(x,y)= uxuyvxvy
特别地,做代换 { x = r cos ⁡ θ y = r sin ⁡ θ \left\{\begin{array}{cc} x=r\cos\theta\\y=r\sin\theta \end{array}\right. {x=rcosθy=rsinθ得到
∫ ∫ D f ( x , y ) d σ = ∫ ∫ D ′ f ( r cos ⁡ θ , r sin ⁡ θ ) r d r d θ {\int\int}_{D} f(x,y)\mathrm{d}\sigma={\int\int}_{D'}f(r\cos\theta,r\sin\theta)r\mathrm{d}r\mathrm{d}\theta ∫∫Df(x,y)dσ=∫∫Df(rcosθ,rsinθ)rdrdθ

三重积分

先是二重积分的
∫ ∫ ∫ Ω f ( x , y , z ) d x d y d z = ∫ ∫ ∫ Ω ′ f ( x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ) ∣ J ∣ d u d v d w {\int\int\int}_{\Omega} f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z={\int\int\int}_{\Omega'}f(x(u,v,w),y(u,v,w),z(u,v,w))|J|\mathrm{d}u\mathrm{d}v\mathrm{d}w ∫∫∫Ωf(x,y,z)dxdydz=∫∫∫Ωf(x(u,v,w),y(u,v,w),z(u,v,w))Jdudvdw
其中
J = ∂ ( x , y , z ) ∂ ( u , v , w ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w ∣ J=\frac{\partial(x,y,z)}{\partial(u,v,w)} =\begin{vmatrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}&\frac{\partial x}{\partial w}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}&\frac{\partial y}{\partial w}\\\frac{\partial z}{\partial u}&\frac{\partial z}{\partial v}&\frac{\partial z}{\partial w} \end{vmatrix} J=(u,v,w)(x,y,z)= uxuyuzvxvyvzwxwywz

柱坐标

特别地,做代换 { x = r cos ⁡ θ y = r sin ⁡ θ z = z \left\{\begin{array}{cc} x=r\cos\theta\\y=r\sin\theta\\z=z \end{array}\right. x=rcosθy=rsinθz=z得到
∫ ∫ ∫ Ω f ( x , y , z ) d x d y d z = ∫ ∫ ∫ Ω ′ f ( r cos ⁡ θ , r sin ⁡ θ , z ) r d r d θ d z {\int\int\int}_{\Omega} f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z={\int\int\int}_{\Omega'}f(r\cos\theta,r\sin\theta,z)r\mathrm{d}r\mathrm{d}\theta\mathrm{d}z ∫∫∫Ωf(x,y,z)dxdydz=∫∫∫Ωf(rcosθ,rsinθ,z)rdrdθdz

球坐标

又或者做代换 { x = ρ sin ⁡ ϕ cos ⁡ θ , 0 ≤ ρ < + ∞ y = ρ sin ⁡ ϕ sin ⁡ θ , 0 ≤ ϕ ≤ π z = z cos ⁡ ϕ , 0 ≤ θ < 2 π \left\{\begin{array}{cc} x=\rho\sin\phi\cos\theta,&0\le\rho<+\infty\\ y=\rho\sin\phi\sin\theta,&0\le\phi\le\pi\\ z=z\cos\phi,&0\le\theta<2\pi \end{array}\right. x=ρsinϕcosθ,y=ρsinϕsinθ,z=zcosϕ,0ρ<+0ϕπ0θ<2π
值得注意的是 θ \theta θ x x x y y y轴的夹角, ϕ \phi ϕ z z z O x y Oxy Oxy平面的夹角
得到
∫ ∫ ∫ Ω f ( x , y , z ) d x d y d z = ∫ ∫ ∫ Ω ′ f ( ρ sin ⁡ ϕ cos ⁡ θ , ρ sin ⁡ ϕ sin ⁡ θ , z cos ⁡ ϕ ) ρ 2 sin ⁡ ϕ d ρ d θ d ϕ {\int\int\int}_{\Omega} f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z={\int\int\int}_{\Omega'}f(\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,z\cos\phi)\rho^2\sin\phi\mathrm{d}\rho\mathrm{d}\theta\mathrm{d}\phi ∫∫∫Ωf(x,y,z)dxdydz=∫∫∫Ωf(ρsinϕcosθ,ρsinϕsinθ,zcosϕ)ρ2sinϕdρdθdϕ

另外,要注意利用奇函数和偶函数的性质,可以极大的简化计算

重积分的应用

曲面面积

例如对于 z = f ( x , y ) z=f(x,y) z=f(x,y)
S = ∫ ∫ D 1 + f x 2 ( x , y ) + f y 2 ( x , y ) d x d y S={\int\int}_D\sqrt{1+f_x^2(x,y)+f_y^2(x,y)}\mathrm{d}x\mathrm{d}y S=∫∫D1+fx2(x,y)+fy2(x,y) dxdy
再如对于参数方程 { x = x ( u , v ) y = y ( u , v ) , ( u , v ) ∈ D ′ z = z ( u , v ) \left\{\begin{array}{cc} x=x(u,v)\\ y=y(u,v),&(u,v)\in D'\\ z=z(u,v) \end{array}\right. x=x(u,v)y=y(u,v),z=z(u,v)(u,v)D
则设 { E = x u 2 + y u 2 + z u 2 F = x u x v + y u y v + z u z v G = x v 2 + y v 2 + z v 2 \left\{\begin{array}{cc} E=x_u^2+y_u^2+z_u^2\\ F=x_ux_v+y_uy_v+z_uz_v\\ G=x_v^2+y_v^2+z_v^2 \end{array}\right. E=xu2+yu2+zu2F=xuxv+yuyv+zuzvG=xv2+yv2+zv2
那么
S = ∫ ∫ D ′ E G − F 2 d u d v S={\int\int}_{D'}\sqrt{EG-F^2}\mathrm{d}u\mathrm{d}v S=∫∫DEGF2 dudv

求转动惯量

设质量密度是 ρ ( x , y , z ) \rho(x,y,z) ρ(x,y,z)

J z = ∫ ∫ ∫ Ω ( x 2 + y 2 ) ρ ( x , y , z ) d V J x = ∫ ∫ ∫ Ω ( z 2 + y 2 ) ρ ( x , y , z ) d V J y = ∫ ∫ ∫ Ω ( x 2 + z 2 ) ρ ( x , y , z ) d V J x y = ∫ ∫ ∫ Ω z 2 ρ ( x , y , z ) d V J y z = ∫ ∫ ∫ Ω x 2 ρ ( x , y , z ) d V J z x = ∫ ∫ ∫ Ω y 2 ρ ( x , y , z ) d V J_z={\int\int\int}_\Omega(x^2+y^2)\rho(x,y,z)\mathrm{d}V\\ J_x={\int\int\int}_\Omega(z^2+y^2)\rho(x,y,z)\mathrm{d}V\\ J_y={\int\int\int}_\Omega(x^2+z^2)\rho(x,y,z)\mathrm{d}V\\ J_{xy}={\int\int\int}_\Omega z^2\rho(x,y,z)\mathrm{d}V\\ J_{yz}={\int\int\int}_\Omega x^2\rho(x,y,z)\mathrm{d}V\\ J_{zx}={\int\int\int}_\Omega y^2\rho(x,y,z)\mathrm{d}V Jz=∫∫∫Ω(x2+y2)ρ(x,y,z)dVJx=∫∫∫Ω(z2+y2)ρ(x,y,z)dVJy=∫∫∫Ω(x2+z2)ρ(x,y,z)dVJxy=∫∫∫Ωz2ρ(x,y,z)dVJyz=∫∫∫Ωx2ρ(x,y,z)dVJzx=∫∫∫Ωy2ρ(x,y,z)dV

曲线积分

第一型曲线积分

假设曲线是 y = y ( x ) y=y(x) y=y(x) [ a , b ] [a,b] [a,b]上积分
∫ L f ( x , y ) d s = ∫ a b f ( x , y ( x ) ) 1 + [ y ′ ( x ) ] 2 d x \int_Lf(x,y)\mathrm{d}s=\int_a^bf(x,y(x))\sqrt{1+[y'(x)]^2}\mathrm{d}x Lf(x,y)ds=abf(x,y(x))1+[y(x)]2 dx
若是参数方程形式 L : { x = ϕ ( t ) y = ψ ( t ) L:\left\{\begin{array}{cc} x=\phi(t)\\ y=\psi(t) \end{array}\right. L:{x=ϕ(t)y=ψ(t)
其中 t ∈ [ α , β ] t\in[\alpha,\beta] t[α,β]

∫ L f ( x , y ) d s = ∫ α β f ( ϕ ( t ) , ψ ( t ) ) [ ϕ ′ ( t ) ] 2 + [ ψ ′ ( t ) ] 2 d t \int_Lf(x,y)\mathrm{d}s=\int_\alpha^\beta f(\phi(t),\psi(t))\sqrt{[\phi'(t)]^2+[\psi'(t)]^2}\mathrm{d}t Lf(x,y)ds=αβf(ϕ(t),ψ(t))[ϕ(t)]2+[ψ(t)]2 dt
三维的曲线积分同理,类比可得

第二型曲线积分

也叫路径积分
对于 L : { x = ϕ ( t ) y = ψ ( t ) L:\left\{\begin{array}{cc} x=\phi(t)\\ y=\psi(t) \end{array}\right. L:{x=ϕ(t)y=ψ(t)
其中 t ∈ [ α , β ] t\in[\alpha,\beta] t[α,β],表示曲线 A B AB AB
∫ A B P ( x , y ) d x + Q ( x , y ) d y = ∫ α β [ P ( ϕ ( t ) , ψ ( t ) ) ϕ ′ ( t ) + Q ( ϕ ( t ) , ψ ( t ) ) ψ ′ ( t ) ] d t \int_{AB}P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y=\int_\alpha^\beta [P(\phi(t),\psi(t))\phi'(t)+Q(\phi(t),\psi(t))\psi'(t)]\mathrm{d}t ABP(x,y)dx+Q(x,y)dy=αβ[P(ϕ(t),ψ(t))ϕ(t)+Q(ϕ(t),ψ(t))ψ(t)]dt

而第二型曲线积分与路径无关的条件是当
∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ

另外,若存在 d u ( x , y ) = P d x + Q d y \mathrm{d}u(x,y)=P\mathrm{d}x+Q\mathrm{d}y du(x,y)=Pdx+Qdy,则可以直接将曲线头尾带入 u ( x , y ) u(x,y) u(x,y)中得到答案

格林公式

L L L是封闭曲线且为正向曲线(逆时针)
∫ L P d x + Q d y = ∫ ∫ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \int_L P\mathrm{d}x+Q\mathrm{d}y={\int\int}_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\mathrm{d}x\mathrm{d}y LPdx+Qdy=∫∫D(xQyP)dxdy

第一型曲线积分和第二型曲线积分的相互转化

∫ A B P d x + Q d y = ∫ A B ( P cos ⁡ α + Q cos ⁡ β ) d s \int_{AB}P\mathrm{d}x+Q\mathrm{d}y= \int_{AB}(P\cos\alpha+Q\cos\beta)\mathrm{d}s ABPdx+Qdy=AB(Pcosα+Qcosβ)ds
其中 ( cos ⁡ α , cos ⁡ β ) (\cos\alpha,\cos\beta) (cosα,cosβ)是曲线 A B AB AB的方向向量

值得注意的是,第一型曲线积分的上下界对调,得到的值是原来的相反数,而第二型曲线积分的值不受上下界对调的影响

曲面积分

第一型曲面积分

假设曲线是 z = g ( x , y ) z=g(x,y) z=g(x,y) D D D(投影)上积分
∫ ∫ S f ( x , y , z ) d S = ∫ ∫ S f ( x , y , g ( x , y ) ) 1 + g x 2 + g y 2 d σ {\int\int}_Sf(x,y,z)\mathrm{d}S={\int\int}_Sf(x,y,g(x,y))\sqrt{1+g_x^2+g_y^2}\mathrm{d}\sigma ∫∫Sf(x,y,z)dS=∫∫Sf(x,y,g(x,y))1+gx2+gy2 dσ
若是参数方程形式 { x = x ( u , v ) y = y ( u , v ) , ( u , v ) ∈ D z = z ( u , v ) \left\{\begin{array}{cc} x=x(u,v)\\ y=y(u,v),&(u,v)\in D\\ z=z(u,v) \end{array}\right. x=x(u,v)y=y(u,v),z=z(u,v)(u,v)D
则设 { E = x u 2 + y u 2 + z u 2 F = x u x v + y u y v + z u z v G = x v 2 + y v 2 + z v 2 \left\{\begin{array}{cc} E=x_u^2+y_u^2+z_u^2\\ F=x_ux_v+y_uy_v+z_uz_v\\ G=x_v^2+y_v^2+z_v^2 \end{array}\right. E=xu2+yu2+zu2F=xuxv+yuyv+zuzvG=xv2+yv2+zv2
那么和上面提到的面积分一样(或者说上面的曲面积分是 f ( x , y , z ) = 1 f(x,y,z)=1 f(x,y,z)=1的特殊形式)
∫ ∫ S f ( x , y , z ) d S = ∫ ∫ D f ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) E G − F 2 d u d v {\int\int}_Sf(x,y,z)\mathrm{d}S={\int\int}_{D}f(x(u,v),y(u,v),z(u,v))\sqrt{EG-F^2}\mathrm{d}u\mathrm{d}v ∫∫Sf(x,y,z)dS=∫∫Df(x(u,v),y(u,v),z(u,v))EGF2 dudv

第二型曲面积分

面对形如:
∫ ∫ S P d y d z + Q d z d x + R d x d y S 为 z = f ( x , y ) {\int\int}_{S}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y\\ S为z=f(x,y) ∫∫SPdydz+Qdzdx+RdxdySz=f(x,y)
可以转化成
± ∫ ∫ S ( P ( − f x ) + Q ( − f y ) + R ) d x d y   \pm{\int\int}_{S}(P(-f_x)+Q(-f_y)+R)\mathrm{d}x\mathrm{d}y\ ±∫∫S(P(fx)+Q(fy)+R)dxdy 
取正号时表示上侧曲面,反之表示下侧曲面

高斯公式

∫ ∫ S P d y d z + Q d z d x + R d x d y = ∫ ∫ ∫ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V {\int\int}_{S}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y={\int\int\int}_\Omega(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})\mathrm{d}V ∫∫SPdydz+Qdzdx+Rdxdy=∫∫∫Ω(xP+yQ+zR)dV
S S S是闭合曲面

斯托克斯公式

∫ A B P d x + Q d y + R d z = ∫ ∫ S ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \int_{AB}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z={\int\int}_{S}(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})\mathrm{d}y\mathrm{d}z+(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})\mathrm{d}z\mathrm{d}x+(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\mathrm{d}x\mathrm{d}y ABPdx+Qdy+Rdz=∫∫S(yRzQ)dydz+(zPxR)dzdx+(xQyP)dxdy
A B AB AB是闭合曲线
右边可以记作
∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \begin{vmatrix} \mathrm{d}y\mathrm{d}z&\mathrm{d}z\mathrm{d}x&\mathrm{d}x\mathrm{d}y\\ \frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\ P&Q&R \end{vmatrix} dydzxPdzdxyQdxdyzR

微分方程

首先,明白一个基本解微分方程的原理:
全解=特解+通解
一个 n n n阶微分方程,其通解应该包含 n n n个可变的常数

验证这 n n n个常数是否独立,应该验证其行列式是否等于 0 0 0 n n n条方程是否线性无关)

接下来讨论几类特殊的微分方程的解法

y ′ = f ( x ) g ( y ) y'=f(x)g(y) y=f(x)g(y)

采用分离变量的方法,得到
d y g ( y ) = f ( x ) d x \frac{\mathrm{d}y}{g(y)}=f(x)\mathrm{d}x g(y)dy=f(x)dx
对两边积分即可

y ′ = f ( a x + b y + c ) y'=f(ax+by+c) y=f(ax+by+c)

做变量替换,令 z = a x + b y + c z=ax+by+c z=ax+by+c,则 d z d x = a + b f ( z ) \frac{\mathrm{d}z}{\mathrm{d}x}=a+bf(z) dxdz=a+bf(z)
再按上述做即可

y ′ = f ( x , y ) y'=f(x,y) y=f(x,y)(其中 f ( x , y ) f(x,y) f(x,y)是齐次函数)

同样做换元 z = y x z=\frac{y}{x} z=xy,推导即可

y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x)

先解 y ′ + P ( x ) y = 0 y'+P(x)y=0 y+P(x)y=0,再将解出来的解可变常数 C C C中替换为 u ( x ) u(x) u(x),代入原方程解出即可

  • 4
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值