【题目】
给定一个包含 [0, n] 中 n 个数的数组 nums ,找出 [0, n] 这个范围内没有出现在数组中的那个数。
【进阶】
你能否实现线性时间复杂度、仅使用额外常数空间的算法解决此问题?
【示例 1】
输入:nums = [3,0,1]
输出:2
解释:n = 3,因为有 3 个数字,所以所有的数字都在范围 [0,3] 内。2 是丢失的数字,因为它没有出现在 nums 中。
【示例 2】
输入:nums = [0,1]
输出:2
解释:n = 2,因为有 2 个数字,所以所有的数字都在范围 [0,2] 内。2 是丢失的数字,因为它没有出现在 nums 中。
【示例 3】
输入:nums = [9,6,4,2,3,5,7,0,1]
输出:8
解释:n = 9,因为有 9 个数字,所以所有的数字都在范围 [0,9] 内。8 是丢失的数字,因为它没有出现在 nums 中。
【示例 4】
输入:nums = [0]
输出:1
解释:n = 1,因为有 1 个数字,所以所有的数字都在范围 [0,1] 内。1 是丢失的数字,因为它没有出现在 nums 中。
【提示】
n == nums.length
1 <= n <= 104
0 <= nums[i] <= n
nums 中的所有数字都 独一无二
【代码】
class Solution {
public:
int missingNumber(vector<int>& nums) {
int n=nums.size(),sum=(n+1)*n/2;
for(auto x:nums)
sum-=x;
return sum;
}
};
【位运算】
class Solution {
public:
int missingNumber(vector<int>& nums) {
int n=nums.size(),rs=n;
for(int i=0;i<n;i++)
rs^=i^nums[i];
return rs;
}
};
【排序】
class Solution {
public:
int missingNumber(vector<int>& nums) {
sort(nums.begin(),nums.end());
for(int i=0;i<nums.size();i++)
if(nums[i]!=i)
return i;
return nums.size();
}
};