【题目】
给定二叉树的根节点 root,找出存在于 不同 节点 A 和 B 之间的最大值 V,其中 V = |A.val - B.val|,且 A 是 B 的祖先。
(如果 A 的任何子节点之一为 B,或者 A 的任何子节点是 B 的祖先,那么我们认为 A 是 B 的祖先)
示例 1:
输入:root = [8,3,10,1,6,null,14,null,null,4,7,13]
输出:7
解释:
我们有大量的节点与其祖先的差值,其中一些如下:
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
在所有可能的差值中,最大值 7 由 |8 - 1| = 7 得出。
示例 2:
输入:root = [1,null,2,null,0,3]
输出:3
提示:
树中的节点数在 2 到 5000 之间。
0 <= Node.val <= 105
【代码】
【方法1:废柴做法】
class Solution:
def dfs(self,root):
if not root:
return
temp=[abs(x-root.val) for x in self.ans]
if temp:
self.maxDiff=max(max(temp),self.maxDiff)
self.ans.append(root.val)
self.dfs(root.left)
self.dfs(root.right)
self.ans.pop()
def maxAncestorDiff(self, root: TreeNode) -> int:
self.ans=[]
self.maxDiff=-1
self.dfs(root)
return self.maxDiff
【方法2】
class Solution:
def dfs(self,root,mx,mn):
if not root:
return
mx=max(mx,root.val)
mn=min(mn,root.val)
if not root.left and not root.right:
self.maxDiff=max(self.maxDiff,mx-mn)
self.dfs(root.left,mx,mn)
self.dfs(root.right,mx,mn)
def maxAncestorDiff(self, root: TreeNode) -> int:
if not root:
return 0
self.maxDiff=-1
self.dfs(root,root.val,root.val)
return self.maxDiff