【树-简单】590. N 叉树的后序遍历

643 篇文章 5 订阅

题目
给定一个 N 叉树,返回其节点值的 后序遍历 。

N 叉树 在输入中按层序遍历进行序列化表示,每组子节点由空值 null 分隔(请参见示例)。

进阶:

递归法很简单,你可以使用迭代法完成此题吗?

示例 1:

输入:root = [1,null,3,2,4,null,5,6]
输出:[5,6,3,2,4,1]

示例 2:

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:[2,6,14,11,7,3,12,8,4,13,9,10,5,1]

提示:

N 叉树的高度小于或等于 1000
节点总数在范围 [0, 10^4] 内

【代码】
在这里插入图片描述

class Solution:
    def dfs(self,root):
        if not root:
            return
        for x in root.children:
            self.dfs(x)
        self.ans.append(root.val)
    def postorder(self, root: 'Node') -> List[int]:
        self.ans=[]
        self.dfs(root)
        return self.ans

【方法2】
在这里插入图片描述

class Solution(object):
    def postorder(self, root):
        if root is None:
            return []
        stack, output = [root, ], []
        while stack:
            root = stack.pop()
            if root:
                output.append(root.val)
            stack.extend(root.children)
        return output[::-1]

【方法3】真正的n叉树的后序遍历
在这里插入图片描述

class Solution:
    def postorder(self, root: 'Node') -> List[int]:
        value, s = [], []
        cur = root
        while s or cur:
            while cur:
                s.append((cur, 0))
                if cur.children:
                    cur = cur.children[0]
                else:
                    cur = None
            cur, c = s.pop()
            if not cur.children or c >= len(cur.children):
                value.append(cur.val)
                cur = None
            else:
                c += 1
                s.append((cur, c))
                if c < len(cur.children):
                    cur = cur.children[c]
                else:
                    cur = None
        return value
n是一种每个节点最多有n个子节点的结构,其遍历主要包括前序遍历、序遍历和后序遍历,这三种遍历顺序可以递归地应用到每一个子节点。以下是使用C语言实现n基本遍历的一个简单示例: ```c #include <stdio.h> #include <stdlib.h> // 定义一个结点结构体 typedef struct Node { int data; // 节点数据 struct Node** children; // 子节点指针数组 int num_children; // 子节点个数 } Node; // 创建新节点 Node* create_node(int data) { Node* node = (Node*)malloc(sizeof(Node)); node->data = data; node->num_children = 0; node->children = malloc(10 * sizeof(Node*)); // 假设每个节点最多有10个子节点 return node; } // 前序遍历:根 -> 左 -> 右 void preorder_traversal(Node* root) { if (root != NULL) { printf("%d ", root->data); for (int i = 0; i < root->num_children; ++i) preorder_traversal(root->children[i]); } } // 序遍历:左 -> 根 -> 右 void inorder_traversal(Node* root) { if (root != NULL) { for (int i = 0; i < root->num_children; ++i) inorder_traversal(root->children[i]); printf("%d ", root->data); } } // 后序遍历:左 -> 右 -> 根 void postorder_traversal(Node* root) { if (root != NULL) { for (int i = 0; i < root->num_children; ++i) postorder_traversal(root->children[i]); printf("%d ", root->data); } } // 主函数测试 int main() { // 初始化n并添加节点... // 这里省略了具体的n创建过程 Node* root = ...; // 获取n的根节点 printf("Preorder traversal: "); preorder_traversal(root); printf("\nInorder traversal: "); inorder_traversal(root); printf("\nPostorder traversal: "); postorder_traversal(root); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值