信号是受噪声Nt干扰的余弦波Xt = Acoswt + φ + Nt,试求它的自相关函数。假设φ是在[0, 2Π]上均匀分布的随机变量,Nt是均值为0方差为σ2的白噪声,且 Nt 与 φ 互不相关。

信号是受噪声Nt干扰的余弦波Xt = Acoswt + φ + Nt,试求它的自相关函数。假设φ是在[0, 2Π]上均匀分布的随机变量,Nt是均值为0方差为σ2的白噪声,且 Nt 与 φ 互不相关。

题目

信号是受噪声N(t)干扰的余弦波X(t) = Acos(wt + φ) + N(t),试求它的自相关函数。假设φ是在[0, 2Π]上均匀分布的随机变量,N(t)是均值为0方差为σ2的白噪声,且 N(t) 与 φ 互不相关。

解答

S ( t ) = A c o s ( ω t + ϕ ) S(t) = Acos(\omega t +\phi) S(t)=Acos(ωt+ϕ)

X ( t ) = S ( t ) + N ( t ) X(t) = S(t)+N(t) X(t)=S(t)+N(t)

R x x = E { [ S ( t ) + N ( t ) ] [ S ( t + τ ) + N ( t + τ ) ] } = E [ S ( t ) S ( t + τ ) ] + E [ S ( t ) N ( t + τ ) ] + E [ N ( t ) S ( t + τ ) ] + E [ N ( t ) N ( t + τ ) ] R_{xx} = E\{[S(t)+N(t)][S(t+\tau)+N(t+\tau)]\}=E[S(t)S(t+\tau)]+E[S(t)N(t+\tau)]+E[N(t)S(t+\tau)]+E[N(t)N(t+\tau)] Rxx=E{[S(t)+N(t)][S(t+τ)+N(t+τ)]}=E[S(t)S(t+τ)]+E[S(t)N(t+τ)]+E[N(t)S(t+τ)]+E[N(t)N(t+τ)]

因为 N ( t ) N(t) N(t) 是均值为0,方差为 σ 2 \sigma^2 σ2的白噪声,因此
E [ N ( t ) ] = 0 E[N(t)] = 0 E[N(t)]=0
E [ N ( t ) N ( t + τ ) ] = σ 2 δ ( τ ) E[N(t)N(t+\tau)] = \sigma^2\delta(\tau) E[N(t)N(t+τ)]=σ2δ(τ)

N ( t ) N(t) N(t) S ( t ) S(t) S(t) 不相关
因此
E [ S ( t ) N ( t + τ ) ] = E [ N ( t ) S ( t + τ ) ] = 0 × E [ S ( t ) ] = 0 E[S(t)N(t+\tau)] = E[N(t)S(t+\tau)] = 0 \times E[S(t)] = 0 E[S(t)N(t+τ)]=E[N(t)S(t+τ)]=0×E[S(t)]=0

E [ S ( t ) S ( t + τ ) ] = E [ A c o s ( ω t + ϕ ) A c o s ( ω t + ω τ + ϕ ) ] = A 2 ∫ 0 2 π c o s ( ω t + ϕ ) c o s ( ω t + ω τ + ϕ ) p ( ϕ ) d ϕ < = = = = = = = = 积 化 和 差 = A 2 2 ∫ 0 2 π c o s ( 2 ω t + 2 ϕ + ω τ ) + c o s ( ω τ ) p ( ϕ ) d ϕ = A 2 2 c o s ( ω τ ) E[S(t)S(t+\tau)] = E[Acos(\omega t+\phi)Acos(\omega t+\omega \tau+\phi)] \\ =A^2 \int_{0}^{2 \pi}cos(\omega t+\phi)cos(\omega t+\omega \tau +\phi)p(\phi)d\phi <========积化和差\\ =\frac{A^2}{2} \int_{0}^{2 \pi}cos(2\omega t+2\phi +\omega \tau)+cos(\omega \tau )p(\phi)d\phi\\ =\frac{A^2}{2}cos(\omega \tau ) E[S(t)S(t+τ)]=E[Acos(ωt+ϕ)Acos(ωt+ωτ+ϕ)]=A202πcos(ωt+ϕ)cos(ωt+ωτ+ϕ)p(ϕ)dϕ<=========2A202πcos(2ωt+2ϕ+ωτ)+cos(ωτ)p(ϕ)dϕ=2A2cos(ωτ)
因此 R x x = A 2 2 c o s ( ω τ ) + σ 2 δ ( τ ) R_{xx} = \frac{A^2}{2}cos(\omega \tau )+\sigma^2\delta(\tau) Rxx=2A2cos(ωτ)+σ2δ(τ)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值