信号是受噪声Nt干扰的余弦波Xt = Acoswt + φ + Nt,试求它的自相关函数。假设φ是在[0, 2Π]上均匀分布的随机变量,Nt是均值为0方差为σ2的白噪声,且 Nt 与 φ 互不相关。
题目
信号是受噪声N(t)干扰的余弦波X(t) = Acos(wt + φ) + N(t),试求它的自相关函数。假设φ是在[0, 2Π]上均匀分布的随机变量,N(t)是均值为0方差为σ2的白噪声,且 N(t) 与 φ 互不相关。
解答
设 S ( t ) = A c o s ( ω t + ϕ ) S(t) = Acos(\omega t +\phi) S(t)=Acos(ωt+ϕ)
则 X ( t ) = S ( t ) + N ( t ) X(t) = S(t)+N(t) X(t)=S(t)+N(t)
R x x = E { [ S ( t ) + N ( t ) ] [ S ( t + τ ) + N ( t + τ ) ] } = E [ S ( t ) S ( t + τ ) ] + E [ S ( t ) N ( t + τ ) ] + E [ N ( t ) S ( t + τ ) ] + E [ N ( t ) N ( t + τ ) ] R_{xx} = E\{[S(t)+N(t)][S(t+\tau)+N(t+\tau)]\}=E[S(t)S(t+\tau)]+E[S(t)N(t+\tau)]+E[N(t)S(t+\tau)]+E[N(t)N(t+\tau)] Rxx=E{[S(t)+N(t)][S(t+τ)+N(t+τ)]}=E[S(t)S(t+τ)]+E[S(t)N(t+τ)]+E[N(t)S(t+τ)]+E[N(t)N(t+τ)]
因为
N
(
t
)
N(t)
N(t) 是均值为0,方差为
σ
2
\sigma^2
σ2的白噪声,因此
E
[
N
(
t
)
]
=
0
E[N(t)] = 0
E[N(t)]=0
E
[
N
(
t
)
N
(
t
+
τ
)
]
=
σ
2
δ
(
τ
)
E[N(t)N(t+\tau)] = \sigma^2\delta(\tau)
E[N(t)N(t+τ)]=σ2δ(τ)
N
(
t
)
N(t)
N(t) 与
S
(
t
)
S(t)
S(t) 不相关
因此
E
[
S
(
t
)
N
(
t
+
τ
)
]
=
E
[
N
(
t
)
S
(
t
+
τ
)
]
=
0
×
E
[
S
(
t
)
]
=
0
E[S(t)N(t+\tau)] = E[N(t)S(t+\tau)] = 0 \times E[S(t)] = 0
E[S(t)N(t+τ)]=E[N(t)S(t+τ)]=0×E[S(t)]=0
E
[
S
(
t
)
S
(
t
+
τ
)
]
=
E
[
A
c
o
s
(
ω
t
+
ϕ
)
A
c
o
s
(
ω
t
+
ω
τ
+
ϕ
)
]
=
A
2
∫
0
2
π
c
o
s
(
ω
t
+
ϕ
)
c
o
s
(
ω
t
+
ω
τ
+
ϕ
)
p
(
ϕ
)
d
ϕ
<
=
=
=
=
=
=
=
=
积
化
和
差
=
A
2
2
∫
0
2
π
c
o
s
(
2
ω
t
+
2
ϕ
+
ω
τ
)
+
c
o
s
(
ω
τ
)
p
(
ϕ
)
d
ϕ
=
A
2
2
c
o
s
(
ω
τ
)
E[S(t)S(t+\tau)] = E[Acos(\omega t+\phi)Acos(\omega t+\omega \tau+\phi)] \\ =A^2 \int_{0}^{2 \pi}cos(\omega t+\phi)cos(\omega t+\omega \tau +\phi)p(\phi)d\phi <========积化和差\\ =\frac{A^2}{2} \int_{0}^{2 \pi}cos(2\omega t+2\phi +\omega \tau)+cos(\omega \tau )p(\phi)d\phi\\ =\frac{A^2}{2}cos(\omega \tau )
E[S(t)S(t+τ)]=E[Acos(ωt+ϕ)Acos(ωt+ωτ+ϕ)]=A2∫02πcos(ωt+ϕ)cos(ωt+ωτ+ϕ)p(ϕ)dϕ<========积化和差=2A2∫02πcos(2ωt+2ϕ+ωτ)+cos(ωτ)p(ϕ)dϕ=2A2cos(ωτ)
因此
R
x
x
=
A
2
2
c
o
s
(
ω
τ
)
+
σ
2
δ
(
τ
)
R_{xx} = \frac{A^2}{2}cos(\omega \tau )+\sigma^2\delta(\tau)
Rxx=2A2cos(ωτ)+σ2δ(τ)