1、:从CoT到MCoT的跨越
传统思维链(CoT)通过模拟人类逐步推理过程,显著提升了语言模型的复杂问题解决能力。然而,现实世界本质上是多模态的——人类通过视觉、听觉、触觉等多感官协同推理。多模态思维链(MCoT) 应运而生,将CoT扩展至图像、视频、音频、3D等模态,推动AI从感知向认知跃迁。
MCoT的发展时间轴:从早期文本模型(如GPT-3)到多模态大模型(如GPT-4V、LLaVA),MCoT逐步融合跨模态交互,成为自动驾驶、医疗等领域的核心技术。
2、方法论:MCoT如何驾驭多模态数据
论文从六大视角系统梳理MCoT方法:
- 理性构建:分为提示驱动、计划驱动与学习驱动。例如,GPT-4通过结构化提示(如“先描述场景,再分析对象关系”)引导推理;HoT模型则通过超图连接多模态节点,模拟人类发散思维。
- 结构化推理:异步模态建模(如IPVR模型的“看-想-确认”三阶段)、定义化流程(如BDoG的辩论-总结框架)与自主流程(如DDCoT的动态问题分解)。
- 信息增强:结合专家工具(如3D生成工具L3GO)与外部知识(如RAGAR的知识检索),提升推理深度。
以图像推理为例,早期模型Multimodal-CoT通过生成中间理性步骤提升视觉问答(VQA)性能,而SoT模型则动态选择推理范式(概念链、符号分块),模仿人类认知策略。视频推理需处理时空动态性,Video-of-Thought提出五阶段框架(目标识别-跟踪-动作分析-验证),显著提升长视频理解能力。
3、应用场景:MCoT的落地实践
- 具身智能:EmbodiedGPT利用MCoT分解机器人任务为可执行子目标,E-CoT模型通过文本指令驱动机械臂操作。
- 自动驾驶:DriveCoT将MCoT集成到端到端驾驶系统,PKRD-CoT模型通过零样本提示实现动态环境决策。
- 医疗健康:MedCoT构建分层专家系统,通过多步推理提升医学影像诊断精度;StressSelfRefine模型结合心理学理论检测视频中的压力信号。
4、 数据集与评测:支撑MCoT发展的基础设施
关键数据集:
- 训练数据:ScienceQA(21K科学问题与解释)、MAVIS(自动生成的数学视觉数据)支持模型学习多步推理。
- 评测基准:MMMU涵盖艺术、科学等多学科视觉问答,MathVista专注于数学视觉推理,HallusionBench评估模型幻觉问题。
长链推理能力评测仍面临挑战。例如,OlympiadBench包含8000+奥林匹克竞赛级题目,要求模型生成详细解题步骤,但通用场景下的开放答案评估仍缺乏有效指标。
5、 挑战与未来:MCoT的瓶颈与突破方向
- 计算可持续性:长链推理依赖大规模测试时计算(如DeepSeek-R1的强化学习框架),资源消耗成瓶颈。
- 错误传播:早期步骤的小误差可能在长链中累积,需开发定量诊断指标(如Progress Reward Models)。
- 符号-神经融合:如何将神经网络的模式识别与符号逻辑结合,仍是未解难题(如几何证明的自动形式化)。
未来方向包括:动态环境适应、跨模态平衡、认知科学启发的新型架构,以及伦理安全框架的设计。
6、总结:MCoT的现状与AGI远景
MCoT通过模拟人类多模态推理,显著提升了AI的复杂任务处理能力。尽管面临计算、鲁棒性等挑战,其在机器人、医疗等领域的成功应用已展露AGI曙光。未来,结合认知科学与新型算法,MCoT或将成为打开通用智能之门的钥匙。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。