RAG 技术深度解析:从原理到实战的大模型增强指南

一、RAG 技术概述

1.1 大模型面临的挑战

在大模型广泛应用的当下,其局限性也逐渐凸显。幻觉问题是其中之一,例如在医疗场景中,大模型可能虚构并不存在的诊断标准;在法律场景里,编造不存在的法条。此外,数据孤岛现象严重,像金融机构因数据隐私和安全等问题,无法将财报上传至公有云;医疗系统需严格遵守 HIPAA 隐私协议,导致数据难以共享和整合。而且,大模型训练数据存在时效性问题,其知识截止在训练数据的时间节点,难以实时反映最新信息。

1.2 RAG 技术的诞生与定义

为应对这些挑战,检索增强生成(Retrieval-Augmented Generation,简称 RAG)技术应运而生。RAG 技术融合了向量检索与大语言模型(LLM)生成,通过从外部知识库实时检索相关信息,为 LLM 的生成过程提供支撑,从而让模型输出更准确、更具时效性和可解释性的内容。简单来说,RAG = 向量检索(实时知识) + LLM 生成(自然表达),它通过「知识准备→智能检索→增强生成」三个阶段,打破了大模型原有的局限。

请添加图片描述

二、RAG 核心技术拆解

2.1 知识准备:构建可检索的智能知识库

2.1.1 文档处理流水线

知识准备阶段,需对多格式文档进行处理,并进行智能分块。以 LangChain 最佳实践为例,使用UnstructuredFileLoader加载文档,如loader = UnstructuredFileLoader(“contract.pdf”, mode=“elements”),随后利用RecursiveCharacterTextSplitter进行文本分割。在问答场景中,实验证明chunk_size设置为 512 Token 时召回率最高,同时设置chunk_overlap为 50 以保留 10% 重叠防止语义断裂,并指定separators为(“\n\n”, “\n”, " "),优先按段落分割。代码实现如下:

from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
loader = UnstructuredFileLoader("contract.pdf", mode="elements")
documents = loader.load()
splitter = RecursiveCharacterTextSplitter(
    chunk_size = 512, 
    chunk_overlap = 50, 
    separators = ("\n\n", "\n", " ")
)
chunks = splitter.split_documents(documents) 
2.1.2 向量嵌入的 “精准度 - 速度” 权衡

将文档分块后,需转化为向量形式以便后续检索。向量嵌入模型众多,不同模型在精准度和速度上各有优劣。例如,一些基于 Transformer 架构的嵌入模型能生成高质量向量,精准度高,但计算成本也高,速度相对较慢;而部分轻量级嵌入模型虽速度快,但精准度可能稍逊一筹。企业在选择时,需根据自身业务场景和数据规模,权衡两者关系。

2.1.3 向量数据库选型矩阵(2025 最新)

常见向量数据库各有特点。Faiss 由 Facebook 开发维护,是用于快速搜索相似性和密集向量聚类的开源库;Chroma 是轻量级、易用的开源嵌入式向量数据库;Milvus 由 Zilliz 开源,专为处理超大规模向量数据设计;PGVector 是 PostgreSQL 的开源扩展,基于 Faiss 库,适用于基于 PostgreSQL 数据库且有向量搜索分析需求的应用场景。企业可根据数据量、查询性能、部署难度等因素综合选型,如下表所示(部分对比):

向量数据库数据量支持查询性能部署难度适用场景
Faiss大规模中等对查询速度要求极高的场景
Chroma中小规模较高轻量级应用,快速搭建场景
Milvus超大规模较高海量向量数据存储与检索
PGVector结合 PostgreSQL 数据规模较高取决于 PostgreSQL 部署已有 PostgreSQL 数据库基础的场景

2.2 智能检索:从百万级数据中精准召回

2.2.1 混合检索公式(附数学原理)

智能检索阶段,为提高召回准确性,常采用混合检索方式。其公式为Score = α×VectorSim(Q,D)+(1−α)×BM25(Q,D),其中α = 0.7为经验最优值(经微软 Bing 实测可提升 12% 准确率)。VectorSim(Q,D)表示查询Q与文档D的向量相似度,基于向量空间的距离度量;BM25(Q,D)是一种基于词频和逆文档频率的经典检索算法,衡量词项在文档中的重要性。通过这种加权组合,综合考虑语义相似性和关键词匹配程度,提升检索效果。

2.2.2 高级检索策略
  • HyDE 技术:利用 LLM 生成假设答案再进行检索。例如,当查询 “量子计算优势” 时,先让 LLM 生成如 “量子计算在…… 方面比经典计算快 1000 倍” 这样的假设答案,再将其向量化后进行检索,能更精准地定位相关文档。

  • 递归分块:先查询文档摘要(如 100 Token),定位相关章节,再深入查询详细段落。这种方式可提升检索速度 40%,尤其适用于处理长文档和大规模知识库。

2.3 增强生成:让 LLM “带着镣铐跳舞”

2.3.1 黄金 Prompt 模板(含约束条件)

在增强生成阶段,设计合理的 Prompt 模板至关重要。例如,在回答关于犬类寿命问题时,可采用如下模板:“答:小型犬12 - 15 年((兽医手册 P23)),大型犬8 - 10 年((育种标准 2023))”。模板中明确给出答案,并附带知识来源,约束 LLM 生成内容的同时,增加答案的可解释性。

2.3.2 生成控制参数(生产环境配置)

以 ChatOpenAI 为例,在生产环境中需合理配置参数。如设置model_name = “gpt - 4 - 1106 - preview”,对于事实性回答,temperature设为 0.1(创造性任务可设为 0.8),控制生成内容的随机性;max_tokens = 500限制生成文本长度;stop = (“###”, “END”)防止生成多余内容。代码如下:

llm = ChatOpenAI(
    model_name = "gpt - 4 - 1106 - preview",
    temperature = 0.1,
    max_tokens = 500,
    stop = ("###", "END")
)

三、企业级实战:2000 行代码构建智能问答系统

3.1 架构设计(金融案例)

以金融行业为例,构建智能问答系统架构。数据来源包括金融财报、行业研报等。通过数据管道对数据进行预处理,如读取 PDF 格式财报,进行敏感信息过滤(如使用正则表达式删除股东身份证号),并添加元数据标注(如时间、行业标签)。检索模块采用 Redis 缓存高频查询,节省 70% 检索时间。生成模块可采用多模型融合方式,如结合 GPT - 4、Claude - 2、文心 4.0,通过投票机制提升回答准确性。

3.2 核心模块实现

3.2.1 数据管道(含脱敏处理)

金融财报处理代码示例如下:

from langchain.document_loaders import PyPDFLoader
import re
loader = PyPDFLoader("2024Q2_report.pdf")
docs = loader.load()
for doc in docs:
    doc.page_content = re.sub(r"\d{15,18}", "***", doc.page_content)
docs_with_metadata = (
    Document(page_content = d.page_content, metadata = {
        "date": "2024 - 06 - 30",
        "industry": "半导体",
        "source": "上市公司公告"
    }) for d in docs
)
3.2.2 检索增强(含缓存机制)

Redis 缓存实现代码如下:

from redis import Redis
cache = Redis(host = "redis://localhost:6379")
def cached_retrieve(query):
    key = f"rag_cache:{hash(query)}"
    if cache.exists(key):
        return json.loads(cache.get(key))
    docs = vectorstore.similarity_search(query, k = 3)
    cache.setex(key, 3600, json.dumps((d.dict() for d in docs)))
    return docs
3.2.3 多模型融合生成

多模型投票机制代码示例:

models = (ChatOpenAI(), Anthropic(), Wenxin())
answers = (model.invoke(prompt) for model in models)
scores = (ragas.faithfulness(question, answer, context) for answer in answers)
best_answer = answers(np.argmax(scores))

3.3 部署优化(性能对比)

在部署阶段,需对系统性能进行优化。对比不同硬件配置(如 CPU、GPU 型号和数量)、不同部署方式(如本地部署、云部署)下系统的响应时间、吞吐量等指标。例如,通过实验发现,在高并发查询场景下,采用 GPU 加速的云部署方式,系统响应时间可缩短 50%,吞吐量提升 80%,从而根据企业实际业务需求,选择最优部署方案。

四、RAG 系统优化:从工程到学术的进阶

4.1 查询理解优化(法律场景)

在法律场景中,基于 BERT 的法律意图分类可优化查询理解。使用transformers库中的pipeline,加载 “legal - bert” 模型对用户查询进行意图分类。如classifier = pipeline(“text - classification”, model = “legal - bert”),intent = classifier(“遗嘱见证人需要几个?”),通过准确理解用户意图,提高检索和生成的准确性。

4.2 上下文压缩技术

  • 长文本截断:当文本超过 4096 Token 时,保留 TF - IDF 前 30% 高频片段,去除低频、冗余信息,减少处理负担,同时尽量保留关键内容。

  • 摘要生成:利用 T5 - small 模型生成 200 Token 摘要,其信息密度≥85%。代码实现如下:

from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("t5 - small")
model = T5ForConditionalGeneration.from_pretrained("t5 - small")
def generate_summary(text):
    input_ids = tokenizer.encode("summarize: " + text, return_tensors = "pt", max_length = 512, truncation = True)
    output = model.generate(input_ids, max_length = 200, num_beams = 4, early_stopping = True)
    summary = tokenizer.decode(output[0], skip_special_tokens = True)
    return summary

RAG 技术为大模型增强提供了行之有效的解决方案,从原理到实战,通过不断优化各个环节,能够显著提升大模型在不同场景下的表现,为企业和用户创造更大价值。在未来,随着技术的不断发展,RAG 有望在更多领域发挥重要作用,推动人工智能应用迈向新的高度。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值