如何从零开始打造一个属于自己的商用AI Agent!是不是听起来就很酷?别担心,我不是在说那些需要高深技术的大项目,而是那种你能轻松上手,用来解决日常小问题的AI Agent。这篇文章就是为AI小白量身定制的,保证你看完就能动手试试!
一、需求分析
首先,得弄明白为啥要搞这个AI Agent。也就是它到底解决哪些人的、哪些问题:需求。
智能体商业化,最终它要解决某一类用户的问题,所以对用户群体的痛点,对业务场景的了解是核心。
是不是有啥重复的、机械的活儿让你烦恼?比如,你是自媒体人,是不是总得花时间找素材、找热点?或者你是老板,得处理各种订单、询价?把这些活儿列出来,看看哪些能交给AI来干,哪些还得自己亲自动手。
举个例子,我有个朋友是做自媒体的,他把日常的工作内容列了个表,发现像找素材、分析热点这些活儿,AI都能帮他搞定。这样一来,他就能把更多时间花在创作上。是不是很赞?
二、软件选型
搞清楚需求后,就得选对工具。这就好比打仗,得有趁手的武器。比如,要收集数据,就得用网页抓取工具;要发布文章,就得和微信公众平台对接。选对了工具,AI Agent就能在不同系统之间自动干活儿,省下不少时间。
现在市面上有很多AI Agent开发平台,比如Dify、Coze、FastGPT这些。每个平台都有自己的特点,比如Coze只能用云端,Dify是完全开源的,但回答问题的能力一般,FastGPT回答问题的能力强,但有点限制。选哪个,得看你的具体需求。(后面会专门有一篇文章给你分析平台选型)
三、提示词工程
提示工程是AI Agent的心脏。用对了提示词,AI的输出就更靠谱,还能省下不少成本。这里有几个超实用的框架,比如ICIO、BROKE、CRISPE、CoT,能帮你写出更有效的提示词。
比如,用ICIO框架,你可以这样写提示词:
-
任务:把这段话翻译一下。
-
背景:这是公司内部会议的开场白。
-
输入数据:请翻译这句话:“人工智能正在改变世界”。
-
输出格式:请用正式的商务英语风格翻译。
是不是很简单?用这些框架,能让AI更明白你的意思,输出更符合你期望的内容。
四、数据库选型:给AI找个“家”
AI Agent运行时产生的数据,得有个地方放。对于不太懂技术的朋友,我推荐用飞书的多维表格,简单直观。但数据多了,读取会变慢。技术人员可以考虑用MySQL、NoSQL这些更专业的数据库。
五、构建UI界面:给AI穿件漂亮的衣服
有了AI Agent,还得给它穿件漂亮的衣服——也就是用户界面。在Coze上,你可以自己动手做界面,但在Dify上,你只能用现成的。不过别担心,你可以用像Cursor这样的AI编程平台,来定制一个属于自己的界面。
六、测试评估:确保AI Agent不掉链子
做好了AI Agent,得测试一下,确保它不出岔子。可以用LangSmith这样的工具,来调试、评估、监控AI的表现。比如,看看它回答问题准不准,处理请求快不快。有问题就改,直到它表现完美。
七、部署发布:让AI Agent上岗!
最后一步,就是部署发布了。不同的平台有不同的方法,比如Coze可以直接发布到豆包、小程序,Dify可以直接发布成Web应用。如果你是独立开发的,还可以买个服务器,自己部署。
动手试试吧!
怎么样,是不是感觉打造AI小帮手也没那么难?其实,只要按照这些步骤,一步步来,你也能轻松上手。别光看,赶紧动手试试吧!说不定,你的AI小帮手就能成为你工作中的得力助手,让你事半功倍!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。