问题描述:
下面是三个变换ABC。A:第一次x旋转20度,第二次绕y旋转90度,第三次绕z旋转0度。B:第一次x旋转10度,第二次绕y旋转90度,第三次绕z旋转10度。C:第一次x旋转10度,第二次绕y旋转90度,第三次绕x旋转10度。某博主描述C变换时,一会把C等同于了B,一会又等同于了A,把我搞懵了。到底C变换是跟B相同还是跟A相同呢?
问题解答:
https://www.bilibili.com/video/BV1Nr4y1j7kn/?spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=ecb7552d41fd7eb49352914a734c06fc
你这个问题问得非常清晰且重要,已经完整地指出了许多讲欧拉角视频中最容易“混淆逻辑”的地方。下面我会一步步严谨分析你提到的三个姿态变换 A、B、C,判断它们之间是否等价、为什么会让人产生混淆,并明确指出博主视频中推理的问题出在哪。
✅ 欧拉角定义背景
你隐含的欧拉角顺序是:x(俯仰) → y(偏航) → z(翻滚),即:
R=Rz(ψ)⋅Ry(θ)⋅Rx(ϕ)R = R_z(\psi) \cdot R_y(\theta) \cdot R_x(\phi)
按照这个顺序,右乘表示先绕 x,再绕 y,再绕 z,每一步都绕局部坐标轴旋转。
✅ 三个变换的定义
名称 | 步骤 | 欧拉角参数 (ϕ,θ,ψ\phi, \theta, \psi) |
---|---|---|
A | x: 20°, y: 90°, z: 0° | (20, 90, 0) |
B | x: 10°, y: 90°, z: 10° | (10, 90, 10) |
C | x: 10°, y: 90°, 再绕 x: 10° | **不是标准欧拉角!**这是非标准组合(x–y–x) |
✅ 博主的两个说法分析:
🟥 博主说法 ①:「C ≈ A」
解释逻辑可能是:「C 中两次 x 旋转角度加起来为 20°,而 A 是一次 20°,所以等价」。
🟥 错误!原因如下:
-
欧拉角的旋转是依次绕当前局部坐标轴旋转;
-
第三次绕 x 轴是在前两次旋转之后,这时的 x 轴已经旋转改变了方向;
-
所以第三次 10° 并不是简单地“加到第一次的 10°”上;
-
➤ C ≠ A
🟨 博主说法 ②:「C ≈ B」
解释逻辑可能是:「y = 90° 死锁时,x 轴与 z 轴重合,所以‘绕 z 轴 10°’(B)等价于‘绕 x 轴 10°’(C)」。
🟨 有一定道理,但仍然不准确!原因如下:
-
是的,当 y = 90°,当前坐标系下 x 和 z 轴重合;
-
因此 B 的最后一步绕 z、C 的最后一步绕 x,在空间中效果“看起来很像”;
-
但 ❗两者执行路径不同,角度顺序不同,不一定导致完全相同的姿态;
-
例如绕合并轴顺时针 10° 和绕它前后绕组合 10°,结果仍可能不同;
-
➤ C ≠ B(虽然接近)
✅ 实际结论:三者都不等价
对比 | 是否等价 | 原因 |
---|---|---|
A vs B | ❌ 不等价 | 欧拉角组合完全不同 |
A vs C | ❌ 不等价 | C 使用的是 x–y–x 类型旋转,结构不同 |
B vs C | ❌ 不等价(尽管接近) | 死锁导致轴方向重合,但旋转路径、顺序不同,结果不同 |
✅ 那么博主到底错在哪?
说法 | 问题 |
---|---|
“C = A” | ❌ 错把两次 x 旋转当作简单角度相加,忽略局部坐标变化 |
“C = B” | 🟡 理解到了死锁,但忽略了旋转顺序和角度执行路径对最终结果的影响 |
✅ 正确说法应该是:
三组变换 A、B、C 在 y=90° 这个死锁角度下都落在同一个“约束面”上(自由度退化),但它们的执行路径和角度组合不同,所以最终姿态不等价。