欧拉角死锁现象解释?

问题描述:

下面是三个变换ABC。A:第一次x旋转20度,第二次绕y旋转90度,第三次绕z旋转0度。B:第一次x旋转10度,第二次绕y旋转90度,第三次绕z旋转10度。C:第一次x旋转10度,第二次绕y旋转90度,第三次绕x旋转10度。某博主描述C变换时,一会把C等同于了B,一会又等同于了A,把我搞懵了。到底C变换是跟B相同还是跟A相同呢?

问题解答:

https://www.bilibili.com/video/BV1Nr4y1j7kn/?spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=ecb7552d41fd7eb49352914a734c06fc

你这个问题问得非常清晰且重要,已经完整地指出了许多讲欧拉角视频中最容易“混淆逻辑”的地方。下面我会一步步严谨分析你提到的三个姿态变换 A、B、C,判断它们之间是否等价为什么会让人产生混淆,并明确指出博主视频中推理的问题出在哪。


✅ 欧拉角定义背景

你隐含的欧拉角顺序是:x(俯仰) → y(偏航) → z(翻滚),即:

R=Rz(ψ)⋅Ry(θ)⋅Rx(ϕ)R = R_z(\psi) \cdot R_y(\theta) \cdot R_x(\phi)

按照这个顺序,右乘表示先绕 x,再绕 y,再绕 z,每一步都绕局部坐标轴旋转。


✅ 三个变换的定义

名称步骤欧拉角参数 (ϕ,θ,ψ\phi, \theta, \psi)
Ax: 20°, y: 90°, z: 0°(20, 90, 0)
Bx: 10°, y: 90°, z: 10°(10, 90, 10)
Cx: 10°, y: 90°, 再绕 x: 10°**不是标准欧拉角!**这是非标准组合(x–y–x)

✅ 博主的两个说法分析:

🟥 博主说法 ①:「C ≈ A」

解释逻辑可能是:「C 中两次 x 旋转角度加起来为 20°,而 A 是一次 20°,所以等价」。

🟥 错误!原因如下:

  • 欧拉角的旋转是依次绕当前局部坐标轴旋转;

  • 第三次绕 x 轴是在前两次旋转之后,这时的 x 轴已经旋转改变了方向;

  • 所以第三次 10° 并不是简单地“加到第一次的 10°”上;

  • C ≠ A


🟨 博主说法 ②:「C ≈ B」

解释逻辑可能是:「y = 90° 死锁时,x 轴与 z 轴重合,所以‘绕 z 轴 10°’(B)等价于‘绕 x 轴 10°’(C)」。

🟨 有一定道理,但仍然不准确!原因如下:

  • 是的,当 y = 90°,当前坐标系下 x 和 z 轴重合

  • 因此 B 的最后一步绕 z、C 的最后一步绕 x,在空间中效果“看起来很像”

  • 但 ❗两者执行路径不同,角度顺序不同,不一定导致完全相同的姿态

  • 例如绕合并轴顺时针 10° 和绕它前后绕组合 10°,结果仍可能不同;

  • C ≠ B(虽然接近)


✅ 实际结论:三者都不等价

对比是否等价原因
A vs B❌ 不等价欧拉角组合完全不同
A vs C❌ 不等价C 使用的是 x–y–x 类型旋转,结构不同
B vs C❌ 不等价(尽管接近)死锁导致轴方向重合,但旋转路径、顺序不同,结果不同

✅ 那么博主到底错在哪?

说法问题
“C = A”❌ 错把两次 x 旋转当作简单角度相加,忽略局部坐标变化
“C = B”🟡 理解到了死锁,但忽略了旋转顺序和角度执行路径对最终结果的影响

✅ 正确说法应该是:

三组变换 A、B、C 在 y=90° 这个死锁角度下都落在同一个“约束面”上(自由度退化),但它们的执行路径和角度组合不同,所以最终姿态不等价。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神笔馬良

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值