该指南是北京大学 AI 肖睿团队发布的,围绕主流 AI 工具展开系统分析,旨在为企业决策者、运营团队及个人使用者提供选型参考,以下从核心内容、测评体系、工具测评、选型指南及未来趋势几方面进行总结:
1、核心内容与框架
- 目标与结构:为用户提供 AI 工具选型参考,内容涵盖文本、图像、音视频、代码生成及大模型管理 5 大类别、39 个工具、92 个实例测评,包含导论、测评框架、工具测评、选型指南四部分。
- 分类框架:按核心功能(文本 / 图像 / 音视频 / 代码等)和应用领域(办公 / 创作 / 研发等)分类,构建 “工具 - 场景” 矩阵。
2、测评体系构建
评估维度:涵盖核心功能、效果质量、易用性、成本效益、集成性、安全合规性等 12 个维度,覆盖技术性能与实际应用需求。
测评方法:包括实测案例分析、用户反馈收集、结构化评分、启发式评估等 6 种方法,强调数据驱动与场景化验证。
权重策略:根据用户类型(个人 / 团队)和场景(如创作 / 办公 / 科研)动态调整维度权重,例如个人创作者侧重效果质量,大型企业优先安全合规与集成性。
3、主流工具深度测评
- 文本生成工具:DeepSeek 代码与中文能力突出,Gemini 多模态与推理强,通义千问性价比高,豆包易用性佳,Kimi 长文本处理优。
- 图像生成工具:Midjourney 艺术效果顶尖但中文支持弱,即梦 AI 中文友好且性价比高,可灵 AI 国风出色,Gemini 适合快速创意。
- 音视频工具:海螺 AI 速度快但不支持克隆,MINIMAX 支持克隆但成本高,Noiz.ai 免费但功能有限。
- 代码生成工具:Cursor 工程化强但收费高,Trae 免费且中文适配好,GitHub Copilot 专业但需科学上网,通义灵码支持多模态交互。
- 大模型管理工具:CherryStudio 功能全面且开源免费,LMStudio 本地部署优但硬件门槛高,Chatbox 轻量级且全平台覆盖。
4、选型指南与策略
- 决策框架:个人用户关注核心功能、易用性与成本,团队需考量安全合规、集成性及协作需求,如企业优先选择支持私有化部署的工具。
- 工作流构建:强调工具组合价值,如营销短视频可组合 DeepSeek(文案)+Midjourney(视觉)+ 剪映 AI(剪辑),提升效率。
5、未来趋势展望
- 技术演进:AI Agent 将成为主流,具备目标拆解、动态规划、多工具调用能力,推动从 “工具辅助” 到 “自主执行” 的变革。
- 挑战与应对:需解决可靠性(幻觉问题)、安全性(数据隐私)、伦理责任(决策归属)等挑战,发展可解释性 AI 与人类监督机制。
部分内容预览
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。