打卡第二天

第一题 求最大公约数和最小公倍数

最大公约数:指两个或多个整数共有约数中最大的一个。

最小公倍数:先求出最大公约数再用两数之积除以最大公约数得出最小公倍数

求最大公约数用到的算法:利用辗转相除法穷举法更相减损术Stein算法求出两个数的最大公约数

  1.辗转相除法:具体做法是用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。

int main()
{
	int a, b, temp1, temp2,temp;
	printf("输入两个整数:");
	scanf("%d %d", &temp1, &temp2);
	 a=temp1 ;
	 b=temp2;
	 if (temp1 < temp2) //通过比较求出两个数中的最大值和最小值
	{
		temp = temp1;
		temp1 = temp2;
		temp2 = temp;
	}
	while (b != 0)//通过循环求两数的余数,直到余数为0
	{
		temp = a%b;
		a = b;
		b = temp;
	}
	printf("最大公约数:%d\n", a);
	printf("最小公倍数:%d\n", temp1*temp2 / a); //(temp1*temp2 / 最大公约数)
	return 0;

}

  2.枚举法(穷举法):从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数。

int main()
{
	int a, b;
	int temp;
	printf("输入两个整数:");
	scanf("%d %d", &a, &b);

	if (a > b)
	{
		temp = b;
	}
	else
	{
		temp = a;
	}
	while (temp > 0)
	{
		if (a%temp == 0 && b%temp == 0)
			break;
		temp--;
	}
	printf("求得最大公约数:%d\n ", temp);
		return 0;
}

  3.更相减殒数:更相减损术,是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法。所以更相减损法也叫等值算法。

int main()
{
	int sum = 1;
	int a, b;
	printf("输入两个整数:");
	scanf("%d %d", &a, &b);
	while (a % 2 == 0 && b % 2 == 0)//判断两个数是否都是偶数
	{
		sum = sum * 2;
		a = a / 2;
		b = b / 2;
	}
	while (1)
	{
		if (a < b)//保证被减数大于减数,否则交换
		{
			int temp = a;
			a = b;
			b = temp;
		}
		int s = a - b;//差值放在s中
		if (b == s)//判断差 和 减数 是否相等,如果是,跳出循环。
		{
			break;
		}
		else
		{
			a = b;
			b = s;
		}
	}
	printf("最大公约数:%d\n", b*sum);//最大公约数就是约掉的若干个2的积与第二步中等数(减数=差)的乘积
	return 0;
}

第二题 将数组A中的内容和数组B中的内容进行交换。(数组一样大)

使用一个中间变量temp就可以完成

int main()
{
	int arr1[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int arr2[10] = { 11,12,13,14,15,16,17,18,19,20 };

	int i = 0;
	int temp;
	for (i = 0; i < 10; i++)
	{
		temp = arr1[i];
		arr1[i] = arr2[i];
		arr2[i] = temp;
	}
	printf("arr1交换后的元素:");
	for (i = 0; i < 10; i++)
	{
		printf("%d ", arr1[i]);
	}
	printf("\n");
	printf("arr2交换后的元素:");
	for (i = 0; i < 10; i++)
	{
		printf("%d ", arr2[i]);
	}
	printf("\n");
	return 0;

}

 第三题 计算1/1-1/2+1/3-1/4+1/5 …… + 1/99 - 1/100 的值。

首先发现分母是偶数时都为负数,奇数时都为正数。就可以判断对2求余数是否为1,如果为1则为奇数,否则为偶数。这边使用sum1和sum2代表偶数和奇数相加的总和,最后计算的结果就是sum1+sum2。

 

int main()
{
	double sum1=0;
	double sum2 = 0;
	int i=0;
	for (i = 1; i < 101; i++)
	{
		if (i % 2 == 0)
		{
			sum1=sum1-1.0 / i;
		}
		else
		{
			sum2=sum2+1.0 / i;
		}
	}
	printf("总和 %lf\n", sum1+sum2);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值