自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 资源 (2)
  • 收藏
  • 关注

原创 成功解决AttributeError: module ‘seaborn‘ has no attribute ‘lvplot‘

lvplot是画增强箱线图的函数,但是lvplot已经过时,而boxplot画出的箱线图效果不够好;可以选择boxenplot函数替换使用

2023-02-28 12:14:22 609

原创 使用sklearn实现线性回归(OLS)和梯度下降(GD)

一、说明这次更新一下线性回归的项目实战,使用sklearn简单实现线性回归和梯度下降。本次使用的数据为红酒口感数据集,小伙伴们可以点击链接进行下载(ps:下载后不用对数据进行修改哦!).二、OLS回归的实现2.1调用numpy导入数据集#调用numpy导入数据集import numpy as npdata = np.genfromtxt('winequality-red.csv',delimiter=';',skip_header=True)X = data[:,:-1]X

2021-10-20 21:03:43 2509

原创 线性回归模型

线性回归是最简单的机器学习模型,也是最基础最重要的分析工具,易于实现。本文将将简单讲述线性回归、最小二乘法和梯度下降三种算法。1.线性回归模型对一个给定的训练集数据,线性回归的目标是找到与这些数据最相符的线性函数。可进行预测、分类,回归分析可以分为三个部分:(1)识别重要变量(2)判断相关性的方向(3)估计回归系数首先,数据可以分为时间序列数据、面板数据和横截面数据三类。(1)时间序列数据:对同一对象在不同时间连续观察得到的数据;(2)横截面数据:在某一时刻所收集的不同对象的数据;(

2021-10-13 21:50:51 7107 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除