Hadoop1.0与Hadoop2.0的区别

1、什么是Hadoop1.0?

Hadoop1.0即第一代Hadoop,指的是版本为Apache Hadoop 0.20.x、1.x或者CDH3系列的Hadoop,内核主要由HDFS和MapReduce两个系统组成,其中MapReduce是一个离线处理框架,
由编程模型(新旧API)、运行时环境(JobTracker和TaskTracker)和数据处理引擎(MapTask和ReduceTask)三部分组成。

2、什么是Hadoop2.0?

Hadoop2.0即第二代Hadoop,指的是版本为Apache Hadoop 0.23.x、2.x或者CDH4系列的Hadoop,内核主要由HDFS、MapReduce和YARN三个系统组成,
其中YARN是一个资源管理系统,负责集群资源管理和调度,MapReduce则是运行在YARN上的离线处理框架,
它与Hadoop 1.0中的MapReduce在编程模型(新旧API)和数据处理引擎(MapTask和ReduceTask)两个方面是相同的。

3、从Hadoop整体框架来看

Hadoop1.0即第一代Hadoop,由分布式存储系统HDFS和分布式计算框架MapReduce组成,其中HDFS由一个NameNode和多个DateNode组成,MapReduce由一个JobTracker和多个TaskTracker组成。
Hadoop2.0即第二代Hadoop为克服Hadoop1.0中的不足:针对Hadoop1.0单NameNode制约HDFS的扩展性问题,提出HDFS Federation,
它让多个NameNode分管不同的目录进而实现访问隔离和横向扩展,同时彻底解决了NameNode单点故障问题;针对Hadoop1.0中的MapReduce在扩展性和多框架支持等方面的不足,
它将JobTracker中的资源管理和作业控制分开,分别由ResourceManager(负责所有应用程序的资源分配)和ApplicationMaster(负责管理一个应用程序)实现,即引入了资源管理框架Yarn。
同时Yarn作为Hadoop2.0中的资源管理系统,它是一个通用的资源管理模块,可为各类应用程序进行资源管理和调度,不仅限于MapReduce一种框架,也可以为其他框架使用,如Tez、Spark、Storm等

4、从MapReduce计算框架来看

MapReduce1.0计算框架主要由三部分组成:编程模型、数据处理引擎和运行时环境。它的基本编程模型是将问题抽象成Map和Reduce两个阶段,
其中Map阶段将输入的数据解析成key/value,迭代调用map()函数处理后,再以key/value的形式输出到本地目录,Reduce阶段将key相同的value进行规约处理,
并将最终结果写到HDFS上;它的数据处理引擎由MapTask和ReduceTask组成,分别负责Map阶段逻辑和Reduce阶段的逻辑处理;
它的运行时环境由一个JobTracker和若干个TaskTracker两类服务组成,其中JobTracker负责资源管理和所有作业的控制,TaskTracker负责接收来自JobTracker的命令并执行它。
MapReducer2.0具有与MRv1相同的编程模型和数据处理引擎,唯一不同的是运行时环境。MRv2是在MRv1基础上经加工之后,运行于资源管理框架Yarn之上的计算框架MapReduce。
它的运行时环境不再由JobTracker和TaskTracker等服务组成,而是变为通用资源管理系统Yarn和作业控制进程ApplicationMaster,
其中Yarn负责资源管理的调度而ApplicationMaster负责作业的管理。

参考:
https://blog.csdn.net/u012050154/article/details/52353545

发布了219 篇原创文章 · 获赞 93 · 访问量 19万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览