c++算法学习笔记 (4)高精度运算

文章介绍了如何使用模板实现高精度的加法和减法算法,处理不含前导零的正整数,通过迭代和进位操作计算结果,并考虑了负数的情况。
摘要由CSDN通过智能技术生成

1. 高精度加法

给定两个正整数(不含前导 0),计算它们的和。

输入格式

共两行,每行包含一个整数。

输出格式

共一行,包含所求的和。

数据范围

1≤整数长度≤100000

输入样例:
12
23
输出样例:
35

模板: 

// 高精度加法模板
#include <iostream>
#include <vector> //.size可以获取长度

using namespace std;
const int N = 1e6 + 10;
// C=A+B
vector<int> add(vector<int> &A, vector<int> &B)
{ // 加&更快,不用拷贝一遍AB
  vector<int> C;
  int t = 0; // Ai+Bi+进位
  for (int i = 0; i <= A.size() || i < B.size(); i++)
  {
    if (i < A.size())
      t += A[i];
    if (i < B.size())
      t += B[i];
    C.push_back(t % 10);
    t /= 10; // 有无进位
  }
  if (t)
  { // 如果最后有进位
    C.push_back(1);
  }
  return C;
}
int main()
{
  string a, b;
  vector<int> A, B;
  cin >> a >> b; // a="123456"
  // 下面将大整数ab用AB存储
  for (int i = a.size() - 1; i >= 0; i--)
  {                          // 逆序存储
    A.push_back(a[i] - '0'); // string 中为ASCII字符,这里转化成整数
  }                          // A=[6,5,4,3,2,1]
  for (int i = b.size() - 1; i >= 0; i--)
  {
    B.push_back(b[i] - '0');
  }
  auto C = add(A, B);
  while (!C.back() && C.size() > 1)
  {
    C.pop_back(); // 去除前导0
  }
  for (int i = C.size() - 1; i >= 0; i--) // 倒着输出
  {
    printf("%d", C[i]);
  }
  return 0;
}

2.高精度减法

给定两个正整数(不含前导 0),计算它们的差,计算结果可能为负数。

输入格式

共两行,每行包含一个整数。

输出格式

共一行,包含所求的差。

数据范围

1≤整数长度≤105

输入样例:
32
11
输出样例:
21

模板: 

// 高精度减法模板(如果有负数,就做标记)
#include <iostream>
#include <vector>
using namespace std;
// C=A-B
bool cmp(vector<int> &A, vector<int> &B) // A>B返回true
{                                        // 判断string谁大
  if (A.size() != B.size())
    return A.size() > B.size();
  for (int i = A.size() - 1; i >= 0; i--)
  {
    if (A[i] != B[i])
    {
      return A[i] > B[i];
    }
  }
  return true;
}
vector<int> sub(vector<int> &A, vector<int> &B)
{
  vector<int> C;
  for (int i = 0, t = 0; i < A.size(); i++) // t:借位
  {                                         // 这里A>=B
    t = A[i] - t;
    if (i < B.size()) // 判断此时B是否还存在
      t -= B[i];
    C.push_back((t + 10) % 10); // 两种情况合二为一: 包含A-B>=0[((t+10)%10)=t]和A-B<0[(t+10)%10]
    if (t < 0)
      t = 1;
    else
      t = 0;
  }
  // 去掉前导0
  while (C.size() > 1 && C.back() == 0)
  { // 若最后=0,则保留0
    C.pop_back();
  }
  return C;
}
int main()
{
  string a, b;
  vector<int> A, B;
  cin >> a >> b;
  for (int i = a.size() - 1; i >= 0; i--)
  {
    A.push_back(a[i] - '0');
  }
  for (int i = b.size() - 1; i >= 0; i--)
  {
    B.push_back(b[i] - '0');
  }
  // 不能直接用a>b比较,因为a>b是两个字符串自左向右逐个字符相比(按ASCII值大小相比较),直到出现不同的字符或遇'\0''为止,即"1111"<"12"

  if (cmp(A, B)) // 看谁大 A>=B直接算,A<B计算-(B-A)
  {
    auto C = sub(A, B);
    for (int i = C.size() - 1; i >= 0; i--)
    {
      cout << C[i];
    }
  }
  else
  {
    auto C = sub(B, A);
    cout << '-'; // 输出一个负号
    for (int i = C.size() - 1; i >= 0; i--)
    {
      cout << C[i];
    }
  }
  return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值