高精度算法解决long long也解决不了的计算
高精度的存储是把每一位单独存储,且是倒序存储,数组num[1]是这个数的个位,num[2]是这个数的十位,以此类推;
(一)高精度加法
#include <iostream>
#include <cstring>
using namespace std;
struct HugeInt{
int len;
int num[100001];
};
HugeInt a, b, w; //w为结果
char c[100001], d[100001];
void Scan_HugeInt() { //读入两个大整数
cin >> c;
cin >> d;
a.len = strlen(c); //strlen求串长
b.len = strlen(d);
for(int i=0; i<a.len; i++) a.num[a.len - i] = c[i] - '0'; //逆序存储
for(int i=0; i<b.len; i++) b.num[b.len - i] = d[i] - '0';
}
void Plus() {
w.len = max(a.len, b.len); //num每一位是0,长度取max不影响加法
for(int i=1; i<=w.len; i++) {
w.num[i] += a.num[i] + b.num[i];
w.num[i+1] += w.num[i] / 10; //处理进位
w.num[i] %= 10; //处理当前位 保证<10
}
if(w.num[w.len + 1] != 0) w.len ++; //加法最多有可能会多出一位
}
int main() {
Scan_HugeInt();
Plus();
for(int i=w.len; i>=1; i--) cout << w.num[i]; //倒序存储 倒序输出
cout << endl;
return 0;
}
(二)高精度减法
#include <iostream>
#include <cstring>
using namespace std;
struct HugeInt {
int len;
int num[100001];
};
HugeInt a, b, w; //w为结果
char c[100001], d[100001];
bool negative; //负数标记
void Scan_HugeInt() { //读入两个大整数
cin >> c;
cin >> d;
if((strlen(c) < strlen(d)) || (strlen(c) == strlen(d) && strcmp(c, d) < 0)) { //若被减数小 交换 记为负数
negative = true;
swap(c, d);
}
a.len = strlen(c);
b.len = strlen(d);
for(int i=0; i<a.len; i++) a.num[a.len - i] = c[i] - '0';
for(int i=0; i<b.len; i++) b.num[b.len - i] = d[i] - '0';
}
void Minus() {
w.len = a.len; //a更大
for(int i=1; i<=w.len; i++) {
if(a.num[i] < b.num[i]) {
a.num[i+1] --; //num[i+1]减成负数也不影响
a.num[i] += 10; //借位
}
w.num[i] += a.num[i] - b.num[i];
}
while(w.num[w.len] == 0 && (w.len != 1)) w.len --; //多余的不是个位的0去掉
}
int main() {
Scan_HugeInt();
Minus();
if(negative == true) cout << "-"; //负数加负号
for(int i=w.len; i>=1; i--) cout << w.num[i]; //倒序存储 倒序输出
cout << endl;
return 0;
}
(三)高精度乘法
#include <iostream>
#include <cstring>
using namespace std;
struct HugeInt {
int len;
int num[100001];
};
HugeInt a, b, w;
char c[10001], d[10001];
void Scan_HugeInt() { //读入两个大整数
cin >> c;
cin >> d;
a.len = strlen(c);
b.len = strlen(d);
for(int i=0; i<a.len; i++) a.num[a.len - i] = c[i] - '0';
for(int i=0; i<b.len; i++) b.num[b.len - i] = d[i] - '0';
}
void Multiply() {
int x; //处理每次进位的变量
for(int i=1; i<=a.len; i++) { //a的第i位
x = 0;
for(int j=1; j<=b.len; j++) { //b的第j位
w.num[i+j-1] += a.num[i] * b.num[j] + x; //用 +=:结果与上次乘的结果相加
x = w.num[i+j-1] / 10;
w.num[i+j-1] %= 10; //进位处理
}
w.num[i+b.len] = x; //多出的最高位
}
w.len = a.len + b.len;
while(w.num[w.len] == 0 && (w.len != 1)) w.len --; //多余的0
}
int main() {
Scan_HugeInt();
Multiply();
for(int i=w.len; i>=1; i--) cout << w.num[i];
cout << endl;
return 0;
}
(四)高精度除法
除以高精时,直接枚举每一位.
除以低精时,可以使用另种模拟更快
Int1000 operator / (const int &b) { //除以低精
if(*this < Int1000(b)) return Int1000(0);
Int1000 ans;
ans.len = len;
int r = 0;
for(int i=ans.len; i>=1; i--) {
r = r * 10 + a[i];
ans.a[i] = r / b;
r %= b;
}
while(ans.len > 1 && !ans.a[ans.len]) ans.len --;
return ans;
}
Int1000 operator / (Int1000 b) {
if(*this < b) return Int1000(0);
Int1000 ans; ans.len = len - b.len + 1;
for(int i=ans.len; i>=1; i--) {
for(int j=1; j<=9; j++) {
ans.a[i] ++;
if((*this) < (ans * b)) {
ans.a[i] --;
break;
}
}
if(ans.a[ans.len] == 0) ans.len --;
}
while(ans.len > 1 && !ans.a[ans.len]) ans.len --;
return ans;
}
高精度模版:
PS:常数较大,谨慎使用
const int MAX_SIZE = 1010;
struct Int {
int len, n[MAX_SIZE];
void Set(int l) {
len = l;
for(int i = 1; i <= len; i ++) n[i] = 0;
}
Int(char *s) {
len = strlen(s);
for(int i = len - 1; ~i; i --) {
if(s[i] <= '9' && s[i] >= '0') {
len = i + 1;
break;
}
}
for(int i = len; i >= 1; i --) n[i] = s[len - i] - '0';
}
Int(long long x = 0) {
len = 0;
do {
n[++ len] = x % 10;
x /= 10;
} while(x);
}
bool operator < (const Int b) {
if(len != b.len) return len < b.len;
for(int i = len; i; i --)
if(n[i] != b.n[i]) return n[i] < b.n[i];
return false;
}
Int operator + (const Int b) const {
Int ans; ans.Set(max(len, b.len) + 1);
for(int i = 1; i <= ans.len; i ++) {
if(i <= len) ans.n[i] += n[i];
if(i <= b.len) ans.n[i] += b.n[i];
ans.n[i + 1] += ans.n[i] / 10;
ans.n[i] %= 10;
}
while(!ans.n[ans.len] && ans.len > 1) ans.len --;
return ans;
}
Int operator - (const Int b) {
Int ans, a = *(this); ans.Set(len);
for(int i = 1; i <= ans.len; i ++) {
if(a.n[i] < b.n[i]) a.n[i + 1] --, a.n[i] += 10;
ans.n[i] += a.n[i] - (i > b.len ? 0 : b.n[i]);
}
while(!ans.n[ans.len] && ans.len > 1) ans.len --;
return ans;
}
Int operator * (Int b) {
Int ans; ans.Set(len + b.len);
for(int i = 1; i <= len; i ++) {
for(int j = 1; j <= b.len; j ++) {
ans.n[i + j - 1] += n[i] * b.n[j];
ans.n[i + j] += ans.n[i + j - 1] / 10;
ans.n[i + j - 1] %= 10;
}
}
while(!ans.n[ans.len] && ans.len > 1) ans.len --;
return ans;
}
Int operator / (const int &b) { //除以低精
if(*this < Int(b)) return Int(0LL);
Int ans; ans.len = len;
int r = 0;
for(int i = ans.len; i; i --) {
r = r * 10 + n[i];
ans.n[i] = r / b;
r %= b;
}
while(ans.len > 1 && !ans.a[ans.len]) ans.len --;
return ans;
}
Int operator / (const Int b) {
if((*this) < b) return Int(0LL);
Int ans; ans.Set(len - b.len + 1);
for(int i = ans.len; i; i --) {
for(int j = 1; j <= 9; j ++) {
ans.n[i] ++;
if((*this) < (ans * b)) {
ans.n[i] --;
break;
}
}
}
while(ans.len > 1 && !ans.n[ans.len]) ans.len --;
return ans;
}
void print() {
for(int i = len; i; i --)
printf("%d", n[i]);
printf("\n");
}
};
黑科技:两个long long实现高精度
typedef long long LL;
const LL Base = (LL)1e9;
struct Long {
LL high, low;
Long(LL x = 0) : low(x) {high = 0;}
friend Long operator + (const Long &a, const Long &b) {
Long c; c.high = a.high + b.high, c.low = a.low + b.low;
if (c.high >= 0 && c.low >= Base) c.high += c.low / Base, c.low = c.low % Base;
if (c.high <= 0 && c.low <= -Base) c.high += c.low / Base, c.low = c.low % Base;
if (c.high > 0 && c.low < 0) c.high --, c.low += Base;
if (c.high < 0 && c.low >= Base) c.high ++, c.low -= Base;
return c;
}
friend bool operator <(const Long &a, const Long &b) {
return a.high == b.high ? a.low < b.low : a.high < b.high;
}
friend Long max(const Long &a, const Long &b) {return a < b ? b : a;}
};