c++算法学习笔记 (13) 链表

1.单链表:

实现一个单链表,链表初始为空,支持三种操作:

  1. 向链表头插入一个数;
  2. 删除第 k 个插入的数后面的一个数;
  3. 在第 k 个插入的数后插入一个数。

现在要对该链表进行 M 次操作,进行完所有操作后,从头到尾输出整个链表。

注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。

输入格式

第一行包含整数 M,表示操作次数。

接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:

  1. H x,表示向链表头插入一个数 x。
  2. D k,表示删除第 k 个插入的数后面的数(当 k 为 0 时,表示删除头结点)。
  3. I k x,表示在第 k 个插入的数后面插入一个数 x(此操作中 k 均大于 0)。
输出格式

共一行,将整个链表从头到尾输出。

数据范围

1≤M≤100000
所有操作保证合法。

输入样例:
10
H 9
I 1 1
D 1
D 0
H 6
I 3 6
I 4 5
I 4 5
I 3 4
D 6
输出样例:
6 4 6 5

代码:(链式前向星)

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 100010;
// head表示头节点的下标
// e[i]表示节点i的值
// ne[i]表示节点i的next指针是多少
// i:编号
// idx存储当前已经用到了哪个点
int head, e[N], ne[N], idx;
// 初始化
void init()
{
    head = -1;
    idx = 0;
}
void add(int x)
{               // 头插
    e[idx] = x; // 存数

    ne[idx] = head; // 头插操作1:idx指向头节点
    head = idx;     // 头插操作2:头节点改成idx

    idx++;
}
// 将x插入到下标是k的点后面
void add(int k, int x)
{
    e[idx] = x; // 存数

    ne[idx] = ne[k]; // 操作1
    ne[k] = idx;     // 操作2

    idx++;
}
// 将下标是k后面的点删除(单链表找后面的点好找)
void remove(int k)
{
    ne[k] = ne[ne[k]];
    // 1->2->3,k=1,ne[1]=2,ne[ne[1]]=3
}

int main()
{
    int m;
    cin >> m;
    init();
    while (m--)
    {
        int k, x;
        char op;
        cin >> op;
        if (op == 'H')
        {
            cin >> x;
            add(x);
        }
        else if (op == 'D')
        {
            cin >> k;
            if (k == 0)
                head = ne[head]; // 特判k=0
            remove(k - 1);
        }
        else
        {
            cin >> k >> x;
            add(k - 1, x);
        }
    }
    for (int i = head; i != -1; i = ne[i])
    {
        cout << e[i] << " ";
    }
    return 0;
}

 2.双链表

实现一个双链表,双链表初始为空,支持 5 种操作:

  1. 在最左侧插入一个数;
  2. 在最右侧插入一个数;
  3. 将第 k 个插入的数删除;
  4. 在第 k 个插入的数左侧插入一个数;
  5. 在第 k 个插入的数右侧插入一个数

现在要对该链表进行 M 次操作,进行完所有操作后,从左到右输出整个链表。

注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。

输入格式

第一行包含整数 M,表示操作次数。

接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:

  1. L x,表示在链表的最左端插入数 x。
  2. R x,表示在链表的最右端插入数 x。
  3. D k,表示将第 k 个插入的数删除。
  4. IL k x,表示在第 k 个插入的数左侧插入一个数。
  5. IR k x,表示在第 k 个插入的数右侧插入一个数。
输出格式

共一行,将整个链表从左到右输出。

数据范围

1≤M≤100000
所有操作保证合法。

输入样例:
10
R 7
D 1
L 3
IL 2 10
D 3
IL 2 7
L 8
R 9
IL 4 7
IR 2 2
输出样例:
8 7 7 3 2 9

 代码:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 100010;
int m;
int e[N], l[N], r[N], idx; // e:这个点的值 l:存左边的数 r:存右边的数
// 初始化
void init()
{
    // 0表示左端点head,1表示右端点tail
    r[0] = 1; // 0号点的右边是1号点
    l[1] = 0;
    idx = 2;
}
// 插入
void addr(int k, int x)
{ // k点右边插入x
    e[idx] = x;

    r[idx] = r[k];
    l[idx] = k;

    r[k] = idx;
    l[r[idx]] = idx;

    idx++; // 不要忘记!!!
}
void addl(int k, int x)
{ // k点左边插入x
    e[idx] = x;

    r[idx] = k;
    l[idx] = l[k];

    l[k] = idx;
    r[l[idx]] = idx;

    idx++; // 不要忘记!!!
}
// 删除
void remove(int k)
{ // 删除第k个点
    r[l[k]] = r[k];
    l[r[k]] = l[k];
}

int main()
{
    cin >> m;
    init(); // 易忘记!!!!
    while (m--)
    {
        string op;
        cin >> op;
        int x, k;
        if (op == "L") // 也可都使用在右边插入(注释里)
        {
            cin >> x;
            addr(0, x); // 在头节点0的右边插入x
        }
        if (op == "R")
        {
            cin >> x;
            // addr(l[1], x); // 在尾节点左边插入x
            addl(1, x);
        }
        if (op == "D")
        {
            cin >> k;
            remove(k + 1); // 这里易错,k都变为k+1,因为idx初始为2
        }
        if (op == "IL")
        {
            cin >> k >> x;
            // addr(l[k + 1], x);
            addl(k + 1, x);
        }
        if (op == "IR")
        {
            cin >> k >> x;
            addr(k + 1, x);
        }
    }
    for (int i = r[0]; i != 1; i = r[i]) // 从r[0]开始
    {
        cout << e[i] << " ";
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值