ZZZ___bj
码龄8年
关注
提问 私信
  • 博客:219,223
    社区:1
    219,224
    总访问量
  • 71
    原创
  • 18,000
    排名
  • 254
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:甘肃省
  • 加入CSDN时间: 2016-07-16
博客简介:

ZZZ___bj的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    407
    当月
    31
个人成就
  • 获得318次点赞
  • 内容获得41次评论
  • 获得612次收藏
创作历程
  • 12篇
    2024年
  • 4篇
    2023年
  • 6篇
    2022年
  • 17篇
    2021年
  • 17篇
    2018年
  • 15篇
    2017年
  • 1篇
    2016年
成就勋章
TA的专栏
  • 论文
    31篇
  • 对话情感识别
    16篇
  • 智能推荐
    17篇
  • python
    2篇
  • 刷题
    4篇
  • 数据结构
    2篇
  • 算法
    3篇
  • java,就业班
    1篇
  • 就业班
    3篇
  • javaweb
    28篇
  • jquery
    6篇
  • ajax
    6篇
  • jstl
    1篇
  • json
    2篇
  • layui
    4篇
  • Springboot
    7篇
  • 工具
    1篇
兴趣领域 设置
  • 人工智能
    深度学习
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

A Persona-Infused Cross-Task Graph Network for Multimodal Emotion Recognition with Emotion Shift

近年来,多模态情绪识别(MERC)的研究主要集中在多模态融合和说话者感知上下文建模上。除了上下文信息外,人格特征也会影响情绪感知。然而,目前的MERC方法只考虑说话者的人格影响,忽略了说话者与收听者的互动模式。此外,情绪转移(ES)的瓶颈问题,即同一说话者的连续话语表现出不同的情绪,在MERC中一直被忽视。早期的ES研究未能区分不同的转移模式,只是简单地介绍了转移是否作为知识发生在MERC模型中,而没有考虑这两个任务的互补性。在此基础上,我们提出了一个注入人物人格的跨任务图网络**(PCGNet)。
原创
发布博客 2024.12.16 ·
770 阅读 ·
7 点赞 ·
0 评论 ·
24 收藏

Multi-Task Learning for Emotion Recognition in Conversation with Emotion Shift

我们提出了一种新的多任务学习模型,称为MtlERC-ES,它可以同时识别三个任务:对话中的情绪识别(ERC)、情绪转移(ES)和语义分类(SC)。
原创
发布博客 2024.12.10 ·
839 阅读 ·
13 点赞 ·
0 评论 ·
28 收藏

CFN-ESA: A Cross-Modal Fusion Network With Emotion-Shift Awareness for Dialogue Emotion Recognition

对话中的多模态情感识别(ERC)越来越受到各领域研究界的关注。在本文中,我们提出了一种具有情感转移感知(CFNESA)的跨模态融合网络。现有的方法平等地使用每种模态,但不区分这些模式中的情绪信息量,这使得很难从多模态数据中充分提取互补信息。为了解决这一问题,在CFN-ESA中,我们将文本模式作为情感信息的主要来源,而将视觉和声学模式作为次要来源。此外,大多数多模态ERC模型忽略了情绪转移信息,过度关注了上下文信息,导致了情绪转移情景下的情绪识别失败。我们精心设计了一个情绪转换模块来解决这一挑战。
原创
发布博客 2024.12.09 ·
712 阅读 ·
24 点赞 ·
0 评论 ·
21 收藏

Harmonizing Code-mixed Conversations: Personality-assisted Code-mixed Response Generation in Dialogu

语码混合,即在单一对话中融合多种语言,是响应生成中的一个独特挑战。捕捉语码混合的复杂性是一项艰巨的任务,因为其变体受个人说话风格和文化背景的广泛影响。在这项研究中,我们探索了语码混合对话中的响应生成。我们引入了一种新的方法,利用从对话中以无监督方式获取的大五人格特质来增强响应生成的性能。这些推断的人格属性通过一种新的融合机制PA3无缝地融入对话背景中。PA3采用了有效的两步注意力公式来融合对话和人格信息。这种融合不仅增强了生成响应的上下文相关性,还提升了模型的整体性能。
原创
发布博客 2024.07.03 ·
881 阅读 ·
9 点赞 ·
0 评论 ·
22 收藏

Is ChatGPT a Good Personality Recognizer? A Preliminary Study?

近年来,个性被视为一种有价值的个人因素,已被纳入情感分析和产品推荐等众多任务中。这引起了对基于文本的个性识别任务的广泛关注,旨在根据给定文本识别个人的个性。考虑到ChatGPT最近在各种自然语言处理任务中表现出显著能力,我们对ChatGPT在基于文本的个性识别任务中的表现进行了初步评估,以生成有效的个性数据。具体来说,我们采用了多种提示策略来探索ChatGPT从给定文本中识别个性的能力,尤其是我们设计的层次化提示策略,用于指导ChatGPT在指定层次分析给定文本。
原创
发布博客 2024.07.01 ·
836 阅读 ·
10 点赞 ·
0 评论 ·
28 收藏

Personality prediction from task‑oriented and open‑domain human–machine dialogues

如果对话系统能够从对话中预测用户的性格,它将能够根据用户的性格进行调整,从而提高任务成功率和用户满意度。在一项最新研究中,通过使用迈尔斯-布里格斯类型指标(MBTI)性格特征和端到端(基于神经网络)的系统进行任务导向的人机对话进行性格预测。然而,尚不清楚这种预测是否适用于其他类型的系统和用户性格特征。为了弄清这一点,我们招募了378名参与者,要求他们填写涵盖25种性格特征的四份性格问卷,并让他们与一个流水线任务导向对话系统或端到端任务导向对话系统进行三轮人机对话。
原创
发布博客 2024.06.26 ·
970 阅读 ·
26 点赞 ·
0 评论 ·
9 收藏

A Data Set of Synthetic Utterances for Computational Personality Analysis

人类人格的计算分析主要集中在五大人格理论上,尽管心理动力学方法具有丰富的理论基础和与各种任务的相关性,但它几乎不存在。在这里,我们提供了4972个合成话语的数据集,与心理动力学方法描述的大五人格维度相对应:抑郁、强迫症、偏执、自恋和反社会精神变态。这些话语是通过人工智能产生的,具有深刻的理论方向,激发了GPT-4提示的设计。该数据集已经通过14个测试进行了验证,它可能与人类人格的计算研究和数字领域中真实人格的设计有关,从游戏到电影角色的艺术生成。人类的人格涉及到相对稳定的思维、情绪和行为模式。它们是。
原创
发布博客 2024.06.24 ·
1086 阅读 ·
12 点赞 ·
0 评论 ·
23 收藏

Dynamic Extraction of Subdialogues for Dialogue Emotion Recognition

对话中的情绪识别(ERC)的目的是识别对话中每一个话语中所表达的情绪。然而,以往的一些方法并没有充分考虑到对话中每个说话者的话语和目标话语的相对位置信息对情绪分析的影响,也忽略了不同子主题下目标话语所表达的情绪的差异。我们引入了一种动态提取子对话(DESD)方法的情绪识别来解决这些问题。该方法利用每个说话者的话语和摘要话语的相对位置信息来提取子对话。通过考虑每个说话者对情感表达的贡献,我们可以更准确地捕捉到对话中的情绪动态。此外,我们还提取了子对话的主题信息,以捕捉不同的子主题对目标话语情绪的影响。通过在四
原创
发布博客 2024.05.08 ·
1166 阅读 ·
13 点赞 ·
0 评论 ·
25 收藏

Personality Enhanced Emotion Generation Modeling for Dialogue Systems

为了创造更具吸引力和真实性的互动体验,有必要考虑个性对情感生成的影响。本文提出了一种创新方法,将个性建模与对话系统的情感生成相结合。通过将个性特征纳入情感生成过程中,我们旨在创造更加个性化和与上下文相符的情感响应。基于大五人格模型和情感计算技术,我们的模型考虑了个性的个体差异,以生成与每个用户独特特征相一致的情感。
原创
发布博客 2024.02.29 ·
1025 阅读 ·
18 点赞 ·
0 评论 ·
21 收藏

Cluster-Level Contrastive Learning for Emotion Recognition in Conversations

我们提出了一种新的低维监督聚类级对比学习(SCCL)方法,该方法首先将高维SCL空间简化为三维情感表示空间的效价-唤醒-优势(VAD),然后执行聚类级对比学习,以纳入可测量的情感原型。为了帮助建模对话和丰富上下文,我们利用预先训练过的知识适配器来注入语言和事实知识。
原创
发布博客 2024.02.28 ·
964 阅读 ·
21 点赞 ·
1 评论 ·
27 收藏

个性增强迭代细化网络用于对话情绪识别

发布资源 2024.02.27 ·
pdf

SUNET: Speaker-utterance interaction Graph Neural Network for Emotion Recognition in Conversations

摘要:在对话中进行情感识别(ERC)能够捕捉说话者在多轮对话中的情感变化,因此具有广泛的应用。近年来,由于图神经网络具有捕捉复杂的非欧几里德空间特征的能力,它们在ERC任务中被自然地广泛使用。然而,如何轻松有效地建模对话以提高ERC在复杂交互模式中的效果仍然需要探索。为此,我们提出了一种新的方法,构建了一个说话者-话语交互异构网络,有效地对上下文进行建模,同时考虑了说话者的全局特征。在此基础上,我们提出了一种基于说话者和相应话语交互的图神经网络,根据说话者的发言顺序动态更新话语和说话者的表示。
原创
发布博客 2024.02.27 ·
1048 阅读 ·
22 点赞 ·
0 评论 ·
26 收藏

SUNET: Emotion Recognition in Conversations

发布资源 2024.02.27 ·
pdf

Automatically Select Emotion for Response via Personality-affected Emotion Transition

摘要:在情绪对话系统中,大多数现有的工作侧重于在回复中呈现指定的情绪,或对用户的情绪做出共情回复,但却忽略了情绪表达的个体差异。文章建议为对话系统配备人格,通过模拟人类在对话中的情绪转换,使其能够自动选择回复的情绪。详细来说,对话系统的情绪是由其前面的情绪过渡到上下文中。这种转换是由前面的对话环境触发的,并受指定的人格特征影响。为了实现这一目标,文章首先将对话系统中的情绪转换建模为前一情绪和回复情绪在情感空间(Valence-Arousal-Dominance,VAD)中的变化。然后,设计了神经网络来编码前
原创
发布博客 2024.02.25 ·
1024 阅读 ·
12 点赞 ·
0 评论 ·
27 收藏

Contrast and Generation Make BART a Good Dialogue Emotion Recognizer

在对话系统中,具有相似语义的话语在不同的语境下可能具有不同的情感。因此,用说话者依赖来建模长期情境情绪关系在对话情绪识别中起着至关重要的作用。同时,区分不同的情绪类别也不是很简单的,因为它们通常具有语义上相似的情绪。为此,我们采用监督对比学习,使不同的情绪相互排斥,从而更好地识别相似的情绪。同时,我们利用一个辅助反应生成任务来增强模型处理上下文信息的能力,从而迫使模型在不同的上下文中识别具有相似语义的情绪。为了实现这些目标,我们使用预先训练好的编码器-解码器模型BART作为我们的主干模型,因为它非常适合于理
原创
发布博客 2023.12.07 ·
210 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

DualGATs: Dual Graph Attention Networks for Emotion Recognition in Conversations

捕捉复杂的语境依赖关系在对话中的情感识别(ERC)中起着至关重要的作用。以往的研究主要集中在说话者感知的语境建模上,而忽略了对话的话语结构。在本文中,我们引入了双图注意网络(DualGATs)来同时考虑话语结构和说话人感知语境的互补方面,旨在实现更精确的ERC。具体来说,我们设计了一个话语意识GAT(DisGAT)模块,通过分析话语间的话语依赖性来整合话语结构信息。此外,我们开发了一个说话者感知的GAT(SpkGAT)模块,通过考虑说话者在话语之间的依赖性来整合说话者感知的上下文信息。
原创
发布博客 2023.11.27 ·
741 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

PIRNet: Personality-Enhanced Iterative Refinement Network for Emotion Recognition in Conversation

对话中的情感识别(ERC)对于增强人机交互中的用户体验具有重要意义。与个体话语中的普通情绪识别不同,ERC的目的是将对话中的组成话语分类为相应的情绪标签,这使得上下文信息至关重要。除了情境信息外,个性特征也会影响基于心理发现的情绪感知。虽然研究人员已经提出了几种方法,并在ERC上取得了良好的结果,但目前在这一领域的工作很少纳入背景信息和个性影响。为此,我们提出了一个新的框架来无缝地整合这些因素,称为“个性增强迭代细化网络(PIRNet)”。具体来说,PIRNet是一种多阶段的迭代方法。
原创
发布博客 2023.11.22 ·
1112 阅读 ·
24 点赞 ·
0 评论 ·
27 收藏

Speaker-Guided Encoder-Decoder Framework for Emotion Recognition in Conversation

对话中的情绪识别(ERC)任务的目的是预测会话中一个话语的情绪标签。由于说话者之间的依赖关系是复杂和动态的,包括说话者内部和间的依赖关系,因此说话者特定信息的建模在ERC中起着至关重要的作用。虽然现有的研究者提出了多种说话者交互建模方法,但他们不能共同探索说话人内部和说话人间的动态依赖,导致上下文语境理解不足,进一步阻碍了情绪预测。为此,我们设计了一种新的说话者建模方案,以动态的方式共同探索说话者内部和间的依赖关系。
原创
发布博客 2023.11.21 ·
112 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Multi-behavior Recommendation with Graph Convolutional Networks

摘要传统的推荐模型通常只使用一种用户-项目交互,但面临着严重的数据稀疏性或冷启动问题。使用多种类型的用户-项目交互,如点击和收藏,可以作为一种有效的解决方案。早期对多行为推荐的努力未能捕捉到行为对目标行为的不同影响强度。它们还忽略了多行为数据中隐含的行为语义。这两个限制都使得数据没有被充分利用来改进目标行为上的推荐性能。在这项工作中,我们通过创新地构建一个统一的图来表示多行为数据,并提出了一个新的模型MBGCN(多行为图卷积网络)来解决这个问题。通过用户-项目传播层学习行为强度,通过项目-项目传播层捕获
原创
发布博客 2022.05.24 ·
2040 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation

摘要对比学习(CL)最近在推荐领域激发了富有成效的研究,因为它从原始数据中提取自我监督信号的能力与推荐系统解决数据稀疏性问题的需求非常一致。基于CL的推荐模型的一个典型途径是首先用结构扰动去进行增强用户-项目二部图,然后最大化不同图增强之间的节点表示一致性。尽管这种模式被证明是有效的,但性能提高的基础仍然是一个谜。在本文中,我们首先通过实验揭示,在基于CL的推荐模型中,CL通过学习更统一的用户/项目表示来操作,这可以隐式地减轻流行偏差。同时,我们揭示了过去被认为是必要的,只是发挥一个微不足道的作用。.
原创
发布博客 2022.04.15 ·
3217 阅读 ·
9 点赞 ·
4 评论 ·
24 收藏
加载更多