HDU - 1863 畅通工程(最小生成树kruskal)

本文介绍了一道经典的最小生成树问题——畅通工程,并提供了一份详细的AC代码。该问题是求解使得所有村庄间都能通过公路连接所需的最低成本。文章通过Kruskal算法解决了这一问题,并加入了一个额外条件来判断统计数据是否足以确保所有村庄都可被连接。
摘要由CSDN通过智能技术生成

点击打开题目链接

畅通工程

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 28525    Accepted Submission(s): 12541

Problem Description

省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。

Input

测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N 
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。

Output

对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。

Sample Input

 
 
3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100

Sample Output

 
 
3 ?

Source

Recommend

lcy   |   We have carefully selected several similar problems for you:   1879  1875  1301  1874  1162 

Statistic | Submit | Discuss | Note

再做几题kruskal就准备脱坑了(#.#)。这个题和之前05年畅通工程的区别是加了一个判断,判断是否存在缺少某村庄信息使得统计数据不足以保证畅通的情况,一开始用了一个vis数组做,一直WA,然后想到因为每个村庄做开始都是孤立的,只需要判断应修的道路是否等于村庄数-1即可

附上AC代码:

#include<bits/stdc++.h>

using namespace std;
const int maxn=100+5;
int par[maxn],vis[maxn];
int N,M;
int sum,num;

struct edges{
int begin_,end_,val;
bool operator <(const edges a)
{
    return val<a.val;
}
}edge[maxn*maxn];

void init()
{
    for(int i=1;i<=N;i++)
        par[i]=i,vis[i]=0;
        sum=num=0;
}

int find(int a)
{
    if(a==par[a])return a;
    return par[a]=find(par[a]);
}

int kruskal(int cnt)
{
//    for(int i=1;i<=M;i++)
//        if(vis[i]==0)
//            return -1;
    for(int i=1;i<=cnt;i++)
    {
        int fx=find(edge[i].begin_);
        int fy=find(edge[i].end_);
        if(fx!=fy)
        {
            if(fx>fy)
                par[fx]=fy;
            else
                par[fy]=fx;
                num++;
            sum+=edge[i].val;
        }
    }
    return sum;
}

int main()
{
    while(~scanf("%d%d",&N,&M),N)
    {
        init();
        for(int i=1;i<=N;i++)
        {
            scanf("%d%d%d",&edge[i].begin_,&edge[i].end_,&edge[i].val);
//            vis[edge[i].begin_]=1;vis[edge[i].end_]=1;
        }
        sort(edge+1,edge+N+1);
        int ans=kruskal(N);
        if(num!=M-1)
            printf("?\n");
        else
            printf("%d\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chook_lxk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值