畅通工程
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 28525 Accepted Submission(s): 12541
Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100
Sample Output
3 ?
Source
Recommend
Statistic | Submit | Discuss | Note
再做几题kruskal就准备脱坑了(#.#)。这个题和之前05年畅通工程的区别是加了一个判断,判断是否存在缺少某村庄信息使得统计数据不足以保证畅通的情况,一开始用了一个vis数组做,一直WA,然后想到因为每个村庄做开始都是孤立的,只需要判断应修的道路是否等于村庄数-1即可。
附上AC代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=100+5;
int par[maxn],vis[maxn];
int N,M;
int sum,num;
struct edges{
int begin_,end_,val;
bool operator <(const edges a)
{
return val<a.val;
}
}edge[maxn*maxn];
void init()
{
for(int i=1;i<=N;i++)
par[i]=i,vis[i]=0;
sum=num=0;
}
int find(int a)
{
if(a==par[a])return a;
return par[a]=find(par[a]);
}
int kruskal(int cnt)
{
// for(int i=1;i<=M;i++)
// if(vis[i]==0)
// return -1;
for(int i=1;i<=cnt;i++)
{
int fx=find(edge[i].begin_);
int fy=find(edge[i].end_);
if(fx!=fy)
{
if(fx>fy)
par[fx]=fy;
else
par[fy]=fx;
num++;
sum+=edge[i].val;
}
}
return sum;
}
int main()
{
while(~scanf("%d%d",&N,&M),N)
{
init();
for(int i=1;i<=N;i++)
{
scanf("%d%d%d",&edge[i].begin_,&edge[i].end_,&edge[i].val);
// vis[edge[i].begin_]=1;vis[edge[i].end_]=1;
}
sort(edge+1,edge+N+1);
int ans=kruskal(N);
if(num!=M-1)
printf("?\n");
else
printf("%d\n",ans);
}
return 0;
}