CodeForces - 707C Pythagorean Triples(数学+规律)

点击打开题目链接

 

C. Pythagorean Triples
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.

For example, triples (3, 4, 5), (5, 12, 13) and (6, 8, 10) are Pythagorean triples.

Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.

Katya had no problems with completing this task. Will you do the same?

Input

The only line of the input contains single integer n (1 ≤ n ≤ 109) — the length of some side of a right triangle.

Output

Print two integers m and k (1 ≤ m, k ≤ 1018), such that nm and k form a Pythagorean triple, in the only line.

In case if there is no any Pythagorean triple containing integer n, print  - 1 in the only line. If there are many answers, print any of them.

Examples
input
3
output
4 5
input
6
output
8 10
input
1
output
-1
input
17
output
144 145
input
67
output
2244 2245
Note

Illustration for the first sample.

最开始看到这个题想打表,但是没想好怎么存,也不知道怎么搜。(TAT)看到他们AC的代码长度200+,知道是一个规律题。

看一下样例输出也差不多可以总结出来,因为让任意输出一组,可以让输入n为一条直角边。

规律为:

①n*n为奇数:联立方程组a+b=n*n;a-b=1;

②n*n为偶数:联立方程组a+b=n*n/2;a-b=2;

③n为1||n为2:无法构成直角三角形

关于一直角边为素数的整边直角三角形的两个性质

附上AC代码:

#include<stdio.h>
#include<iostream>

using namespace std;
typedef long long ll;

int main()
{
    ll n;
    scanf("%lld",&n);
    if(n<=2)printf("-1\n");
    else if(n%2)
        cout<<(n*n-1)/2<<' '<<(n*n+1)/2<<endl;
    else
        cout<<(n*n/2-2)/2<<' '<<(n*n/2+2)/2<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chook_lxk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值