Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.
For example, triples (3, 4, 5), (5, 12, 13) and (6, 8, 10) are Pythagorean triples.
Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.
Katya had no problems with completing this task. Will you do the same?
The only line of the input contains single integer n (1 ≤ n ≤ 109) — the length of some side of a right triangle.
Print two integers m and k (1 ≤ m, k ≤ 1018), such that n, m and k form a Pythagorean triple, in the only line.
In case if there is no any Pythagorean triple containing integer n, print - 1 in the only line. If there are many answers, print any of them.
3
4 5
6
8 10
1
-1
17
144 145
67
2244 2245
Illustration for the first sample.
最开始看到这个题想打表,但是没想好怎么存,也不知道怎么搜。(TAT)看到他们AC的代码长度200+,知道是一个规律题。
看一下样例输出也差不多可以总结出来,因为让任意输出一组,可以让输入n为一条直角边。
规律为:
①n*n为奇数:联立方程组a+b=n*n;a-b=1;
②n*n为偶数:联立方程组a+b=n*n/2;a-b=2;
③n为1||n为2:无法构成直角三角形
附上AC代码:
#include<stdio.h>
#include<iostream>
using namespace std;
typedef long long ll;
int main()
{
ll n;
scanf("%lld",&n);
if(n<=2)printf("-1\n");
else if(n%2)
cout<<(n*n-1)/2<<' '<<(n*n+1)/2<<endl;
else
cout<<(n*n/2-2)/2<<' '<<(n*n/2+2)/2<<endl;
return 0;
}