(一)直接插入排序(Straight Insertion Sort)
直接插入排序是一种最简单的排序方法。它的基本操作是将一个记录插入到已经排好序的有序表中,从而构成一个新的,记录数增1的有序表。
直接插入排序的一般步骤:
1.将第一个元素看作已经排好序的有序表。
2.遍历2->n位置的元素,如果当前元素a[i]小于a[i-1],将当前元素放入哨所中。
3.从i-1往前寻找第一个小于等于哨所元素的元素a[j]。
4.将j+1->i-1的元素后移一位,将哨所元素填入j+1位置。
排序过程图:
思路:
首记录自身有序,从第二个记录到最末一个,每次都将当前记录插入其前有序表中使得仍然有序
时间复杂度:
最快O(N) 最慢O(N²) 平均O(N²)
空间复杂度:
O(1)
稳定性:
稳定
代码:
void InsertSort(int arr[], int n) {
for(int i = 2; i <= n; i++) {
if(arr[i] < arr[i - 1]) {
arr[0] = arr[i];
int j;
for(j = i - 1; arr[j] > arr[0]; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = arr[0];
}
}
return;
}
(二)折半插入排序(Binary Insertion Sort)
折半插入排序是在直接插入排序的基础上,当当前元素小于前一元素时,不再进行前面元素的逆序遍历寻找第一个大于它的元素值,而是通过对前部分元素进行二分查找。查找的时间复杂度虽然可以从O(n)到O(logn),但是元素平移的复杂度不变。所以总复杂度还为O(N²)。
代码:
void BInsertSort(int arr[], int n) {
for(int i = 2; i <= n; i++) {
if(arr[i] < arr[i - 1]) {
arr[0] = arr[i];
//二分寻找第一个大于等于哨所元素的位置
int low = 1, high = i - 1;
while(low <= high) {
int mid = (low + high) / 2;
if(arr[0] < arr[mid]) high = mid - 1;
else low = mid + 1;
}
int j;
for(j = i - 1; j >= high + 1; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = arr[0];
}
}
return;
}
(三)2-路插入排序
2-路插入排序是在折半插入的基础上为了减少移动次数,创建一个临时的循环顺序表。每插入一个元素,判断当前元素是否可以直接插入表头位置或者表尾位置,否则再插入中间。例如:在2,5,4 中插入1,如采用一般插入方法势必要移动三个元素位置,但是如果采用循环顺序表则可以直接插入(first - 1 + len) % len 位置,可以省去部分移动。效率稍微高一点,但是平均复杂度仍是O(N²)。
代码:
void Path2InsertionSort(int arr[], int len) {
int tmp[len] = {0};
tmp[0] = arr[1];
int first = 0, last = 0;
for(int i = 2; i <= len; i++) {
//判断是否可以直接插入队头
if(arr[i] < tmp[first]) {
first = (first - 1 + len) % len;
tmp[first] = arr[i];
}
//判断是否可以直接插入队尾
else if(arr[i] > tmp[last]) {
last += 1;
tmp[last] = arr[i];
}
//否则元素后移插入队中
else {
int j = last++;
while(tmp[j] > arr[i]) {
tmp[(j + 1) % len] = tmp[j];
j = (j - 1 + len) % len;
}
tmp[j + 1] = arr[i];
}
}
for(int i = 1; i <= len; i++) {
arr[i] = tmp[(i + first - 1 + len) % len];
}
return;
}