浅析各类排序算法(四) 插入类排序之直接插入排序及折半插入,2-路插入算法

(一)直接插入排序(Straight Insertion Sort)

直接插入排序是一种最简单的排序方法。它的基本操作是将一个记录插入到已经排好序的有序表中,从而构成一个新的,记录数增1的有序表。

直接插入排序的一般步骤:

1.将第一个元素看作已经排好序的有序表。

2.遍历2->n位置的元素,如果当前元素a[i]小于a[i-1],将当前元素放入哨所中。

3.从i-1往前寻找第一个小于等于哨所元素的元素a[j]。

4.将j+1->i-1的元素后移一位,将哨所元素填入j+1位置。

排序过程图:

思路:

首记录自身有序,从第二个记录到最末一个,每次都将当前记录插入其前有序表中使得仍然有序

时间复杂度:

最快O(N)   最慢O(N²)  平均O(N²)

空间复杂度:

O(1)

稳定性:

稳定

代码:

void InsertSort(int arr[], int n) {
    for(int i = 2; i <= n; i++) {
        if(arr[i] < arr[i - 1]) {
            arr[0] = arr[i];
            int j;
            for(j = i - 1; arr[j] > arr[0]; j--) {
                arr[j + 1] = arr[j];
            }
            arr[j + 1] = arr[0];
        }
    }
    return;
}

 

(二)折半插入排序(Binary Insertion Sort)

折半插入排序是在直接插入排序的基础上,当当前元素小于前一元素时,不再进行前面元素的逆序遍历寻找第一个大于它的元素值,而是通过对前部分元素进行二分查找。查找的时间复杂度虽然可以从O(n)到O(logn),但是元素平移的复杂度不变。所以总复杂度还为O(N²)。

代码:

void BInsertSort(int arr[], int n) {
    for(int i = 2; i <= n; i++) {
        if(arr[i] < arr[i - 1]) {
            arr[0] = arr[i];
            //二分寻找第一个大于等于哨所元素的位置
            int low = 1, high = i - 1;
            while(low <= high) {
                int mid = (low + high) / 2;
                if(arr[0] < arr[mid]) high = mid - 1;
                else low = mid + 1;
            }
            int j;
            for(j = i - 1; j >= high + 1; j--) {
                arr[j + 1] = arr[j];
            }
            arr[j + 1] = arr[0];
        }
    }
    return;
}
 

(三)2-路插入排序

2-路插入排序是在折半插入的基础上为了减少移动次数,创建一个临时的循环顺序表。每插入一个元素,判断当前元素是否可以直接插入表头位置或者表尾位置,否则再插入中间。例如:在2,5,4 中插入1,如采用一般插入方法势必要移动三个元素位置,但是如果采用循环顺序表则可以直接插入(first - 1 + len) % len 位置,可以省去部分移动。效率稍微高一点,但是平均复杂度仍是O(N²)。

代码:

void Path2InsertionSort(int arr[], int len) {
    int tmp[len] = {0};
    tmp[0] = arr[1];
    int first = 0, last = 0;
    for(int i = 2; i <= len; i++) {
        //判断是否可以直接插入队头
        if(arr[i] < tmp[first]) {
            first = (first - 1 + len) % len;
            tmp[first] = arr[i];
        }
        //判断是否可以直接插入队尾
        else if(arr[i] > tmp[last]) {
            last += 1;
            tmp[last] = arr[i];
        }
        //否则元素后移插入队中
        else {
            int j = last++;
            while(tmp[j] > arr[i]) {
                tmp[(j + 1) % len] = tmp[j];
                j = (j - 1 + len) % len;
            }
            tmp[j + 1] = arr[i];
        }
    }
    for(int i = 1; i <= len; i++) {
        arr[i] = tmp[(i + first - 1 + len) % len];
    }
    return;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chook_lxk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值