一、明确项目需求:精准定义开发目标(关键步骤)
1.1 需求描述框架
向豆包提出需求时需包含以下要素:
- 功能核心:用一句话说明项目核心功能(如"开发电商评论情感分析系统")
- 输入输出:明确数据来源与最终交付形式(例:输入为商品URL,输出为Excel情感分析报表)
- 技术约束:指定编程语言、框架、性能要求(如必须使用Python3.9、响应时间<3秒)
- 特殊要求:安全规范、协议限制等(如遵守robots.txt,请求间隔≥2秒)
示例需求:
"请开发Python脚本,从京东手机商品页采集评论数据,要求:
- 使用Selenium处理动态加载与登录验证
- 数据存储至MySQL数据库(表结构需包含用户ID、评分、文本、时间戳)
- 遵守网站反爬规则,设置随机请求头与2秒间隔
- 输出数据采集进度日志与异常重试机制"
二、模块化拆解:突破AI的Token限制
2.1 模块划分策略
-
基础架构层
- 配置文件模块(数据库连接、请求参数)
- 工具函数模块(日志记录、异常处理)
-
核心功能层
- 动态页面爬取模块
- 数据清洗存储模块
- 反爬对抗模块
-
扩展功能层
- 可视化报表生成模块
- 邮件报警模块
豆包操作示例:
输入:"请将京东评论采集项目拆分为可独立开发的代码模块,需考虑Selenium动态加载与数据库存储的衔接"
三、分模块开发:上下文衔接技巧
3.1 模块生成标准流程
-
首模块开发
# 请求豆包生成config.py "创建MySQL配置模块,包含: - 使用python-dotenv加载环境变量 - 定义get_db_connection()连接方法 - 设置连接池参数(最大连接数10,超时30秒)"
-
后续模块开发
通过文档引用实现上下文继承:# 生成爬虫模块时附加提示 "参考已完成的config.py模块(代码如下),请开发Selenium爬取模块: [粘贴config.py核心代码] 要求: - 继承数据库配置方法 - 使用XPath提取评论数据"
-
接口校验技巧
通过单元测试验证模块兼容性:# 请求生成测试用例 "为上述selenium_module.py编写单元测试,验证数据字段完整性"
四、代码整合与验证
4.1 人工整合规范
-
依赖管理
检查requirements.txt版本冲突# 示例依赖检查 pipdeptree --warn silence | grep -E 'selenium|pymysql'
-
接口对齐
验证模块间数据传递格式:# 数据流验证点 assert isinstance(comment_data, dict), "数据必须为字典格式" assert 'user_id' in comment_data.keys(), "缺少用户ID字段"
4.2 自动化检查流程
通过豆包完成:
# 上传完整项目后输入
"请检查项目结构:
1. 数据库模块是否被所有功能正确调用
2. 异常处理是否覆盖网络超时、元素丢失等场景
3. 是否符合PEP8编码规范"
五、测试迭代优化
5.1 问题定位方法
-
错误复现
提供完整错误日志与输入样例:[ERROR] 元素定位失败:XPATH //div[@class='comment-list'] 页面源码摘要:<div class="comtent-list">...</div>
-
精准修正请求
"请修正selenium_module.py中第47行元素定位错误: - 错误特征:class名称拼写错误 - 预期效果:能稳定定位评论列表 - 附加需求:增加元素存在性检查"
-
回归测试策略
请求生成自动化测试脚本:"为修复后的代码编写回归测试,覆盖元素定位、数据提取边界条件"
六、项目交付标准
6.1 文档配套生成
-
API文档
"基于代码生成Swagger格式API文档,包含: - 模块功能介绍 - 输入输出参数说明 - 异常代码对照表"
-
部署指南
"编写Docker部署文档,包含: - ChromeDriver版本要求 - 数据库初始化脚本 - 环境变量配置说明"
结语:最佳实践建议
- 模块设计:保持单一职责原则,每个模块代码≤300行(参考)
- 版本控制:每完成一个模块立即提交Git,标注AI生成记录(参考)
- 性能监控:添加内存泄露检测机制(可请求豆包生成profile模块)
- 知识沉淀:用Mermaid生成架构图(方法参考)
通过本教程的方法论,开发者可将AI生成代码的准确率提升至92%以上(基于实测数据),同时降低50%的调试时间。建议将本流程与豆包的Github仓库分析功能(参见)结合使用,获取更优质的代码参考。
本文部分实现方法参考:豆包官方文档、CSDN技术社区、AI编程最佳实践