hdu Cyclic Tour (1853)

题意:

已知城市分为几个不相交的环,每个城市只能属于一个环,一个环最少2个城市,求访问每一个城市一次的最小代价和,代价是城市之间的边。换言之,就是把所有城市访问一遍的最小代价。 

解答:以城市之间的路为边,城市为顶点,建立二分图,KM匹配一下

题解:

//KM二分匹配 

#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 1e9
using namespace std;
const int maxn=100+10;

struct Max_Match
{
    int n,W[maxn][maxn];
    int Lx[maxn],Ly[maxn];
    bool S[maxn],T[maxn];
    int left[maxn];

    bool match(int i)
    {
        S[i]=true;
        for(int j=1;j<=n;j++)if(Lx[i]+Ly[j]==W[i][j] && !T[j])
        {
            T[j]=true;
            if(left[j]==-1 || match(left[j]))
            {
                left[j]=i;
                return true;
            }
        }
        return false;
    }

    void update()
    {
        int a=1<<30;
        for(int i=1;i<=n;i++)if(S[i])
        for(int j=1;j<=n;j++)if(!T[j])
            a=min(a, Lx[i]+Ly[j]-W[i][j]);
        for(int i=1;i<=n;i++)
        {
            if(S[i]) Lx[i] -=a;
            if(T[i]) Ly[i] +=a;
        }
    }

    int solve(int n)
    {
        this->n=n;
        memset(left,-1,sizeof(left));
        for(int i=1;i<=n;i++)
        {
            Lx[i]=Ly[i]=0;
            for(int j=1;j<=n;j++) Lx[i]=max(Lx[i], W[i][j]);
        }
        for(int i=1;i<=n;i++)
        {
            while(true)
            {
                for(int j=1;j<=n;j++) S[j]=T[j]=false;
                if(match(i)) break;
                else update();
            }
        }
        int ans=0;
        for(int i=1;i<=n;i++)
        {
            if(W[left[i]][i]==-INF) return -1;
            ans += W[left[i]][i];
        }
        return -ans;//注意这里返回的是负值
    }
}KM;

int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)==2)
    {
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            KM.W[i][j]=-INF;
        while(m--)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            KM.W[u][v]=max(KM.W[u][v],-w);//可能存在重边
        }
        printf("%d\n",KM.solve(n));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值