题意:
已知城市分为几个不相交的环,每个城市只能属于一个环,一个环最少2个城市,求访问每一个城市一次的最小代价和,代价是城市之间的边。换言之,就是把所有城市访问一遍的最小代价。
解答:以城市之间的路为边,城市为顶点,建立二分图,KM匹配一下
//KM二分匹配
#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 1e9
using namespace std;
const int maxn=100+10;
struct Max_Match
{
int n,W[maxn][maxn];
int Lx[maxn],Ly[maxn];
bool S[maxn],T[maxn];
int left[maxn];
bool match(int i)
{
S[i]=true;
for(int j=1;j<=n;j++)if(Lx[i]+Ly[j]==W[i][j] && !T[j])
{
T[j]=true;
if(left[j]==-1 || match(left[j]))
{
left[j]=i;
return true;
}
}
return false;
}
void update()
{
int a=1<<30;
for(int i=1;i<=n;i++)if(S[i])
for(int j=1;j<=n;j++)if(!T[j])
a=min(a, Lx[i]+Ly[j]-W[i][j]);
for(int i=1;i<=n;i++)
{
if(S[i]) Lx[i] -=a;
if(T[i]) Ly[i] +=a;
}
}
int solve(int n)
{
this->n=n;
memset(left,-1,sizeof(left));
for(int i=1;i<=n;i++)
{
Lx[i]=Ly[i]=0;
for(int j=1;j<=n;j++) Lx[i]=max(Lx[i], W[i][j]);
}
for(int i=1;i<=n;i++)
{
while(true)
{
for(int j=1;j<=n;j++) S[j]=T[j]=false;
if(match(i)) break;
else update();
}
}
int ans=0;
for(int i=1;i<=n;i++)
{
if(W[left[i]][i]==-INF) return -1;
ans += W[left[i]][i];
}
return -ans;//注意这里返回的是负值
}
}KM;
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==2)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
KM.W[i][j]=-INF;
while(m--)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
KM.W[u][v]=max(KM.W[u][v],-w);//可能存在重边
}
printf("%d\n",KM.solve(n));
}
return 0;
}