题意:有n个点m条边的有向图,一个人可以从一个起点走最终回到起点,每个点只能访问一次。意思是要把这个图分成很多个环,每个点只能属于一个环,求构成这些环的最短路程,若不能满足要求的图就输出-1。
解法一:一个人要从起点出发又回到起点,并且每个点只能走一次。这不就是二分匹配问题吗?把每个点拆成两个点
i和i'。把i作为二分图左边的点,i'作为二分图右边的点。假设u到v有条边,即左边的u可以和右边的v匹配。题目又要求路程最小,并且每个点都要有匹配点,显然这是km(最大权完美匹配)。只需要把边权作为取负就ok 了。
注意:之前我一直没相通的是,怎么判断这个图是不符合要求的(即有些点不能匹配到点,不能构成环)。其实,我们可以先构造成完全图,即初始化左边每个点与右边每个点的权值为-INF。如果km跑出来后,左边的点有匹配到右边的点的值为-INF就输出-1。还需要注意的是有重边!!
#include<iostream>
#include<string>
#include<stdio.h>
#include<string.h>
#include<vector>
#include<math.h>
#include<queue>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
#define MAXN 305
#define LL long long
#define INF 1000000001
int lx[MAXN],ly[MAXN],r[MAXN];
int vis[MAXN],s[MAXN],t[MAXN];
int w[MAXN][MAXN],slack[MAXN];
int n,m;
void init()
{
for(int i=0;i<MAXN;i++)
{
for(int j=0;j<MAXN;j++)
{
w[i][j]=-INF;//初始化匹配的边权为-INF
}
}
}
int match(int i)
{
int j;
s[i]=1;
for(j=1;j<=n;j++)
{
if(lx[i]+ly[j]==w[i][j]&&!t[j])
{
t[j]=1;
if(!r[j]||match(r[j]))
{
r[j]=i;
return 1;
}
}
}
return 0;
}
void update()
{
int a=INF;
for(int i=1;i<=n;i++)
{
if(s[i])
for(int j=1;j<=n;j++)
if(!t[j])a=min(a,lx[i]+ly[j]-w[i][j]);
}
for(int i=1;i<=n;i++)
{
if(s[i])
lx[i]-=a;
if(t[i])
ly[i]+=a;
}
}
void km()
{
int i,j;
for(i=1;i<=n;i++)
{
r[i]=lx[i]=ly[i]=0;
for(j=1;j<=n;j++)
{
lx[i]=max(lx[i],w[i][j]);
}
}
for(i=1;i<=n;i++)
{
while(1)
{
memset(s,0,sizeof s);
memset(t,0,sizeof t);
if(match(i))break;
else update();
}
}
}int main()
{
int i;
while(cin>>n>>m)
{
init();
for(i=1;i<=m;i++)
{
int u,v,length;
cin>>u>>v>>length;
// w[u][v]=-length;
w[u][v]=max(w[u][v],-length);
}
km();
int f=0,ans=0;
for(i=1;i<=n;i++)
{
if(w[r[i]][i]==-INF)
{
f=1;break;
}
ans+=w[r[i]][i];
}
if(f==1)
{
puts("-1");
}
else
printf("%d\n",-ans);
}
return 0;
}
#include<iostream>
#include<string>
#include<stdio.h>
#include<string.h>
#include<vector>
#include<math.h>
#include<queue>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
#define MAXN 1005
#define LL long long
#define INF 0x3f7f7f7f
const double eps = 1e-10;
struct Edge
{
int from,to,cap,flow,cost;
Edge(int from=0,int to=0,int cap=0,int flow=0,int cost=0)
{
this->from=from;
this->to=to;
this->cap=cap;
this->flow=flow;
this->cost=cost;
}
};
vector<Edge>edges;
vector<int>g[MAXN];
bool vis[MAXN];
int dis[MAXN];
int pre[MAXN];
int a[MAXN];
int s,t;
void init()
{
for(int i=0;i<MAXN;i++)
{
g[i].clear();
}
edges.clear();
}
void add(int from,int to,int cap,int cost)
{
edges.push_back(Edge(from,to,cap,0,cost));
edges.push_back(Edge(to,from,0,0,-cost));
int m=edges.size();
g[from].push_back(m-2);
g[to].push_back(m-1);
}
bool spfa(int &flow,int &cost)
{
int i;
for(i=0;i<MAXN;i++)
dis[i]=INF;
memset(vis,0,sizeof(vis));
queue<int>q;
q.push(s);
dis[s]=0;
vis[s]=1;
pre[s]=0;
a[s]=INF;
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
int sz=g[u].size();
for(i=0;i<sz;i++)
{
Edge &e=edges[g[u][i]];
if(e.cap>e.flow&&dis[e.to]>dis[u]+e.cost)
{
dis[e.to]=dis[u]+e.cost;
pre[e.to]=g[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
if(!vis[e.to])
{
vis[e.to]=1;
q.push(e.to);
}
}
}
}
if(dis[t]==INF)
return false;
flow+=a[t];
cost+=dis[t]*a[t];
int v=t;
while(v!=s)
{
edges[pre[v]].flow+=a[t];
edges[pre[v]^1].flow-=a[t];
v=edges[pre[v]].from;
}
return true;
}
int n,m;
int minCost()
{
int flow=0,cost=0;
while(spfa(flow,cost));
if(flow==n)
return cost;
else return -1;
}
int maze[105][105];
int main()
{
int i,j;
while(cin>>n>>m)
{
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
maze[i][j]=INF;
init();
for(i=1;i<=m;i++)
{
int u,v,len;
cin>>u>>v>>len;
maze[u][v]=min(maze[u][v],len);
}
s=0,t=2*n+1;;
for(i=1;i<=n;i++)
{
add(s,i,1,0);
add(i+n,t,1,0);
for(j=1;j<=n;j++)
{
if(maze[i][j]!=INF)
{
add(i,j+n,1,maze[i][j]);
}
}
}
cout<<minCost()<<endl;
}
return 0;
}