支持向量机 task3

本文详细介绍了支持向量机(SVM),包括间隔与支持向量的概念,如何寻找最大间隔的超平面,以及对偶问题的解决方法。通过拉格朗日乘子法,展示了SVM如何通过核函数处理线性不可分问题,最终形成只与支持向量相关的模型。
摘要由CSDN通过智能技术生成

支持向量机 ——周志华西瓜书 笔记

  1. 间隔与支持向量

    给点训练样本集 D = { ( x 1 , y 2 , . . . , ( x m , y m ) ) } , y ∈ { − 1 , + 1 } D=\{(x_1, y_2, ..., (x_m, y_m))\}, y\in \{-1, +1\} D={ (x1,y2,...,(xm,ym))},y{ 1,+1}, 分类学习最基本的想法就是基于训练集 D D D在样本空间中找到一个划分超平面,将不同类别的样本分开。需要划分超平面对训练样本局部扰动的“容忍”性最好,最鲁棒的, 对未见示例的泛化能力 最强。
    在这里插入图片描述
    ​ 在样本空间中, 划分超平面可通过如下线性方程来描述:
    (1) w T x + b = 0 w^Tx+b=0 \tag{1} wTx+b=0(1)
    其中 w = ( w 1 , w 2 , . . . ; w d ) w=(w_1, w_2, ...;w_d) w=(w1,w2,...;wd)为法向量, 决定了超平面的方向, b b b为位移项, 决定了超平面与原点之间的距离。
    (2) r = ∣ w T x + b ∣ ∣ ∣ w ∣ ∣ r=\frac{|w^Tx+b|}{||w||}\tag{2} r=wwTx+b(2)
    ​ 假设超平面 ( w , b ) (w,b) (w,b)能将训练样本正确分类,即对于 ( x i , y i ) ∈ D (x_i, y_i) \in D (xi,yi)D, 若 y i = + 1 y_i = +1 yi=+1, 则有 w T x i + b &gt; 0 w^Tx_i +b&gt; 0 wTxi+b>0; 若 y i = − 1 y_i = -1 yi=1, 则有 w T x i + b &lt; 0 w^Tx_i +b &lt; 0 wTxi+b<0, 令
    (3) w T x i + b ≥ + 1 , y i = + 1 ; w T x i + b ≤ − 1 , y i = − 1 w^Tx_i +b \geq +1, y_i=+1;\\ w^Tx_i +b \leq -1, y_i = -1 \tag{3} wTxi+b+1,yi=+1;wTxi+b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值