支持向量机 ——周志华西瓜书 笔记
-
间隔与支持向量
给点训练样本集 D = { ( x 1 , y 2 , . . . , ( x m , y m ) ) } , y ∈ { − 1 , + 1 } D=\{(x_1, y_2, ..., (x_m, y_m))\}, y\in \{-1, +1\} D={ (x1,y2,...,(xm,ym))},y∈{ −1,+1}, 分类学习最基本的想法就是基于训练集 D D D在样本空间中找到一个划分超平面,将不同类别的样本分开。需要划分超平面对训练样本局部扰动的“容忍”性最好,最鲁棒的, 对未见示例的泛化能力 最强。
在样本空间中, 划分超平面可通过如下线性方程来描述:
(1) w T x + b = 0 w^Tx+b=0 \tag{1} wTx+b=0(1)
其中 w = ( w 1 , w 2 , . . . ; w d ) w=(w_1, w_2, ...;w_d) w=(w1,w2,...;wd)为法向量, 决定了超平面的方向, b b b为位移项, 决定了超平面与原点之间的距离。
(2) r = ∣ w T x + b ∣ ∣ ∣ w ∣ ∣ r=\frac{|w^Tx+b|}{||w||}\tag{2} r=∣∣w∣∣∣wTx+b∣(2)
假设超平面 ( w , b ) (w,b) (w,b)能将训练样本正确分类,即对于 ( x i , y i ) ∈ D (x_i, y_i) \in D (xi,yi)∈D, 若 y i = + 1 y_i = +1 yi=+1, 则有 w T x i + b > 0 w^Tx_i +b> 0 wTxi+b>0; 若 y i = − 1 y_i = -1 yi=−1, 则有 w T x i + b < 0 w^Tx_i +b < 0 wTxi+b<0, 令
(3) w T x i + b ≥ + 1 , y i = + 1 ; w T x i + b ≤ − 1 , y i = − 1 w^Tx_i +b \geq +1, y_i=+1;\\ w^Tx_i +b \leq -1, y_i = -1 \tag{3} wTxi+b≥+1,yi=+1;wTxi+b≤