密码CTF(3)

一、[SWPUCTF 2021 新生赛]crypto5——p、q相差较小

1.题目:

from gmpy2 import *
from Crypto.Util.number import *

flag  = '**********'

p = getPrime(512)
q = next_prime(p)
m1 = bytes_to_long(bytes(flag.encode()))

e = 0x10001
n = p*q

flag1 = pow(m1,e,n)
print('flag= '+str(flag1))
print('n= '+str(n))


flag= 10227915341268619536932290456122384969242151167487654201363877568935534996454863939953106193665663567559506242151019201314446286458150141991211233219320700112533775367958964780047682920839507351492644735811096995884754664899221842470772096509258104067131614630939533042322095150722344048082688772981180270243
n= 52147017298260357180329101776864095134806848020663558064141648200366079331962132411967917697877875277103045755972006084078559453777291403087575061382674872573336431876500128247133861957730154418461680506403680189755399752882558438393107151815794295272358955300914752523377417192504702798450787430403387076153

2.

import gmpy2
import libnum


e = 0x10001
flag = 10227915341268619536932290456122384969242151167487654201363877568935534996454863939953106193665663567559506242151019201314446286458150141991211233219320700112533775367958964780047682920839507351492644735811096995884754664899221842470772096509258104067131614630939533042322095150722344048082688772981180270243
n = 52147017298260357180329101776864095134806848020663558064141648200366079331962132411967917697877875277103045755972006084078559453777291403087575061382674872573336431876500128247133861957730154418461680506403680189755399752882558438393107151815794295272358955300914752523377417192504702798450787430403387076153

# yafu分解
p = 7221289171488727827673517139597844534869368289455419695964957239047692699919030405800116133805855968123601433247022090070114331842771417566928809956045093
q = 7221289171488727827673517139597844534869368289455419695964957239047692699919030405800116133805855968123601433247022090070114331842771417566928809956044421

n = p*q
phi = (p-1)*(q-1)
d = gmpy2.invert(int(e), phi)
m1 = gmpy2.powmod(flag, d, n)
print(libnum.n2s(int(m1)))

NSSCTF{no_why}

二、[SWPUCTF 2021 新生赛]crypto5——小明文攻击

1.题目:

flag= 25166751653530941364839663846806543387720865339263370907985655775152187319464715737116599171477207047430065345882626259880756839094179627032623895330242655333
n= 134109481482703713214838023035418052567000870587160796935708584694132507394211363652420160931185332280406437290210512090663977634730864032370977407179731940068634536079284528020739988665713200815021342700369922518406968356455736393738946128013973643235228327971170711979683931964854563904980669850660628561419

2.解题:

题目只给了flag和n,这个时候就考虑小明文攻击,e非常小,可以爆破出来,e是素数。

3.

from gmpy2 import iroot
import sympy
import binascii

c = 25166751653530941364839663846806543387720865339263370907985655775152187319464715737116599171477207047430065345882626259880756839094179627032623895330242655333
n = 134109481482703713214838023035418052567000870587160796935708584694132507394211363652420160931185332280406437290210512090663977634730864032370977407179731940068634536079284528020739988665713200815021342700369922518406968356455736393738946128013973643235228327971170711979683931964854563904980669850660628561419


def small_m_atk(c, n):
    e = 2
    while e < 2 ** 10:    # 要限制e的范围,否则会一直循环
        i = 0
        if iroot(c + i * n, e)[1]:
            m = iroot(c + i * n, e)[0]
        i += 1
        e = sympy.nextprime(e)
    return m

print("flag:", binascii.unhexlify(hex(small_m_atk(c, n))[2:]))

NSSCTF{because_i_like}

三、[AFCTF 2018]你能看出这是什么加密么———RSA

1.题目:

p=0x928fb6aa9d813b6c3270131818a7c54edb18e3806942b88670106c1821e0326364194a8c49392849432b37632f0abe3f3c52e909b939c91c50e41a7b8cd00c67d6743b4f

q=0xec301417ccdffa679a8dcc4027dd0d75baf9d441625ed8930472165717f4732884c33f25d4ee6a6c9ae6c44aedad039b0b72cf42cab7f80d32b74061

e=0x10001

c=0x70c9133e1647e95c3cb99bd998a9028b5bf492929725a9e8e6d2e277fa0f37205580b196e5f121a2e83bc80a8204c99f5036a07c8cf6f96c420369b4161d2654a7eccbdaf583204b645e137b3bd15c5ce865298416fd5831cba0d947113ed5be5426b708b89451934d11f9aed9085b48b729449e461ff0863552149b965e22b6   

2.解题:数据都是十六进制,将它们转换为十进制,是普通的RSA解密,解密后得到

b'\x02\xd3\xe4v\xea\x80r\x83\xda\x99\x88\xf5#\x08\xbbAT\x8b\xaf\xd2\xf4\xdc\x9f\xd3\xbf\xb7A\xc3\xcc\xc5`\xa1\x8b\x86\x18y\xd0&\x88\x10\xef\xbe\x83\xcer\xceC\x17\xec[\xb7%\x08\xef\x16\x1f\xab\x0c\x96\xa3\xdc N^\x8e,\xa3\x11{\x99U\xcd\x15o\xd7B\xf4L\x8f}&\xc5$\xca\xd5;\xf9\x02Y\xc1\xbbS\xfd4\x83M\x96\xa9\xbd;\x83/\xf7\x00afctf{R54_|5_$0_$imp13}'

在末尾得到flag

3.

import gmpy2
import libnum


p = 0x928fb6aa9d813b6c3270131818a7c54edb18e3806942b88670106c1821e0326364194a8c49392849432b37632f0abe3f3c52e909b939c91c50e41a7b8cd00c67d6743b4f
q = 0xec301417ccdffa679a8dcc4027dd0d75baf9d441625ed8930472165717f4732884c33f25d4ee6a6c9ae6c44aedad039b0b72cf42cab7f80d32b74061
e = 0x10001
c = 0x70c9133e1647e95c3cb99bd998a9028b5bf492929725a9e8e6d2e277fa0f37205580b196e5f121a2e83bc80a8204c99f5036a07c8cf6f96c420369b4161d2654a7eccbdaf583204b645e137b3bd15c5ce865298416fd5831cba0d947113ed5be5426b708b89451934d11f9aed9085b48b729449e461ff0863552149b965e22b6


print(int(p))
print(int(q))
print(int(e))
print(int(c))


p = 32968350940699980657930803613151404473574304024691423777313774889908862596593974505408563479347203657944730457083838853799946370868164530123853574071511042506373967
q = 2880152120462299039547844713611759800616693058487756771628124899159366904931022178508385592572818981251437302744086103000323987445642079008931937
e = 65537
c = 79200636304478271014515653428599205348546363880946576416664212880828226632721700716018261410389126930860598324371523316772928996360356422063555113754727289043115498759013305194277072343492062380609722125010442330717505742205680602598802403784826674446752282126860193320062982428054987016007285150027446362806
n = p * q
phi = (q - 1) * (p - 1)
d = gmpy2.invert(e, phi)
m = gmpy2.powmod(c, d, n)
print(libnum.n2s(int(m)))

NSSCTF{R54_|5_$0_$imp13}

四、[HGAME 2022 week3]RSA attack 3——维纳攻击

1.题目:

from Crypto.Util.number import getPrime
from gmpy2 import invert
from libnum import s2n
from secret import flag

p = getPrime(2048)
q = getPrime(2048)
n = p * q
d = getPrime(64)
e = invert(d, (p - 1) * (q - 1))
c = pow(s2n(flag), e, n)
print(f"n = {n}")
print(f"e = {e}")
print(f"c = {c}")

n = 507419170088344932990702256911694788408493968749527614421614568612944144764889717229444020813658893362983714454159980719026366361318789415279417172858536381938870379267670180128174798344744371725609827872339512302232610590888649555446972990419313445687852636305518801236132032618350847705234643521557851434711389664130274468354405273873218264222293858509477860634889001898462547712800153111774564939279190835857445378261920532206352364005840238252284065587291779196975457288580812526597185332036342330147250312262816994625317482869849388424397437470502449815132000588425028055964432298176942124697105509057090546600330760364385753313923003549670107599757996810939165300581847068233156887269181096893089415302163770884312255957584660964506028002922164767453287973102961910781312351686488047510932997937700597992705557881172640175117476017503918294534205898046483981707558521558992058512940087192655700351675718815723840568640509355338482631416345193176708501897458649841539192993142790402734898948352382350766125000186026261167277014748183012844440603384989647664190074853086693408529737767147592432979469020671772152652865219092597717869942730499507426269170189547020660681363276871874469322437194397171763927907099922324375991793759
e = 77310199867448677782081572109343472783781135641712597643597122591443011229091533516758925238949755491395489408922437493670252550920826641442189683907973926843505436730014899918587477913032286153545247063493885982941194996251799882984145155733050069564485120660716110828110738784644223519725613280140006783618393995138076030616463398284819550627612102010214315235269945251741407899692274978642663650687157736417831290404871181902463904311095448368498432147292938825418930527188720696497596867575843476810225152659244529481480993843168383016583068747733118703000287423374094051895724494193455175131120243097065270804457787026492578916584536863548445813916819417857064037664101684455000184987531252344582899589746272173970083733130106407810619258077266603898529285634495710846838011858287024329514491058790557305041389614650730267774482954666726949886313386881066593946789460028399523245777171320319444673551268379126203862576627540177888290265714418064334752499940587750374552330008143708562065940245637685833371348603338834447212248648869514585047871442060412622164276894766238383894693759347590977926306581080390685360615407766600573527565016914830132066428454738135380178959590692145577418811677639050929791996313180297924833690095
c = 165251729917394529793163344300848992394021337429474789711805041655116845722480301677817165053253655027459227404782607373107477419083333844871948673626672704233977397989843349633720167495862807995411682262559392496273163155214888276398332204954185252030616473235814999366132031184631541209554169938146205402400412307638567132128690379079483633171535375278689326189057930259534983374296873110199636558962144635514392282351103900375366360933088605794654279480277782805401749872568584335215630740265944133347038070337891035560658434763924576508969938866566235926587685108811154229747423410476421860059769485356567301897413767088823807510568561254627099309752215808220067495561412081320541540679503218232020279947159175547517811501280846596226165148013762293861131544331444165070186672186027410082671602892508739473724143698396105392623164025712124329254933353509384748403154342322725203183050328143736631333990445537119855865348221215277608372952942702104088940952142851523651639574409075484106857403651453121036577767672430612728022444370874223001778580387635197325043524719396707713385963432915855227152371800527536048555551237729690663544828830627192867570345853910196397851763591543484023134551876591248557980182981967782409054277224

2.解题:e非常大,d比较小

3.

import binascii
import gmpy2
import libnum


def transform(x, y):  # 使用辗转相处将分数 x/y 转为连分数的形式
    res = []
    while y:
        res.append(x // y)
        x, y = y, x % y
    return res


def continued_fraction(sub_res):
    numerator, denominator = 1, 0
    for i in sub_res[::-1]:  # 从sublist的后面往前循环
        denominator, numerator = numerator, i * numerator + denominator
    return denominator, numerator  # 得到渐进分数的分母和分子,并返回


# 求解每个渐进分数
def sub_fraction(x, y):
    res = transform(x, y)
    res = list(map(continued_fraction, (res[0:i] for i in range(1, len(res)))))  # 将连分数的结果逐一截取以求渐进分数
    return res


def get_pq(a, b, c):  # 由p+q和pq的值通过维达定理来求解p和q
    par = gmpy2.isqrt(b * b - 4 * a * c)  # 由上述可得,开根号一定是整数,因为有解
    x1, x2 = (-b + par) // (2 * a), (-b - par) // (2 * a)
    return x1, x2


def wienerAttack(e, n):
    for (d, k) in sub_fraction(e, n):  # 用一个for循环来注意试探e/n的连续函数的渐进分数,直到找到一个满足条件的渐进分数
        if k == 0:  # 可能会出现连分数的第一个为0的情况,排除
            continue
        if (e * d - 1) % k != 0:  # ed=1 (mod φ(n)) 因此如果找到了d的话,(ed-1)会整除φ(n),也就是存在k使得(e*d-1)//k=φ(n)
            continue

        phi = (e * d - 1) // k  # 这个结果就是 φ(n)
        px, qy = get_pq(1, n - phi + 1, n)
        if px * qy == n:
            p, q = abs(int(px)), abs(int(qy))  # 可能会得到两个负数,负负得正未尝不会出现
            d = gmpy2.invert(e, (p - 1) * (q - 1))  # 求ed=1 (mod  φ(n))的结果,也就是e关于 φ(n)的乘法逆元d
            return d
    print("该方法不适用")

n = 507419170088344932990702256911694788408493968749527614421614568612944144764889717229444020813658893362983714454159980719026366361318789415279417172858536381938870379267670180128174798344744371725609827872339512302232610590888649555446972990419313445687852636305518801236132032618350847705234643521557851434711389664130274468354405273873218264222293858509477860634889001898462547712800153111774564939279190835857445378261920532206352364005840238252284065587291779196975457288580812526597185332036342330147250312262816994625317482869849388424397437470502449815132000588425028055964432298176942124697105509057090546600330760364385753313923003549670107599757996810939165300581847068233156887269181096893089415302163770884312255957584660964506028002922164767453287973102961910781312351686488047510932997937700597992705557881172640175117476017503918294534205898046483981707558521558992058512940087192655700351675718815723840568640509355338482631416345193176708501897458649841539192993142790402734898948352382350766125000186026261167277014748183012844440603384989647664190074853086693408529737767147592432979469020671772152652865219092597717869942730499507426269170189547020660681363276871874469322437194397171763927907099922324375991793759
e = 77310199867448677782081572109343472783781135641712597643597122591443011229091533516758925238949755491395489408922437493670252550920826641442189683907973926843505436730014899918587477913032286153545247063493885982941194996251799882984145155733050069564485120660716110828110738784644223519725613280140006783618393995138076030616463398284819550627612102010214315235269945251741407899692274978642663650687157736417831290404871181902463904311095448368498432147292938825418930527188720696497596867575843476810225152659244529481480993843168383016583068747733118703000287423374094051895724494193455175131120243097065270804457787026492578916584536863548445813916819417857064037664101684455000184987531252344582899589746272173970083733130106407810619258077266603898529285634495710846838011858287024329514491058790557305041389614650730267774482954666726949886313386881066593946789460028399523245777171320319444673551268379126203862576627540177888290265714418064334752499940587750374552330008143708562065940245637685833371348603338834447212248648869514585047871442060412622164276894766238383894693759347590977926306581080390685360615407766600573527565016914830132066428454738135380178959590692145577418811677639050929791996313180297924833690095
c = 165251729917394529793163344300848992394021337429474789711805041655116845722480301677817165053253655027459227404782607373107477419083333844871948673626672704233977397989843349633720167495862807995411682262559392496273163155214888276398332204954185252030616473235814999366132031184631541209554169938146205402400412307638567132128690379079483633171535375278689326189057930259534983374296873110199636558962144635514392282351103900375366360933088605794654279480277782805401749872568584335215630740265944133347038070337891035560658434763924576508969938866566235926587685108811154229747423410476421860059769485356567301897413767088823807510568561254627099309752215808220067495561412081320541540679503218232020279947159175547517811501280846596226165148013762293861131544331444165070186672186027410082671602892508739473724143698396105392623164025712124329254933353509384748403154342322725203183050328143736631333990445537119855865348221215277608372952942702104088940952142851523651639574409075484106857403651453121036577767672430612728022444370874223001778580387635197325043524719396707713385963432915855227152371800527536048555551237729690663544828830627192867570345853910196397851763591543484023134551876591248557980182981967782409054277224
d = wienerAttack(e, n)
m = pow(c, d, n)
print(libnum.n2s(int(m)))

NSSCTF{dO|YOU:kNOw!tHE*PRINcIplE*bEhInd%WInNEr#aTTacK}

五、[HGAME 2022 week2]RSA Attack2——RSA

1.题目:

import re
from math import ceil
from Crypto.Util.number import getPrime
from libnum import s2n
from secret import flag

flag_parts = list(map(s2n, re.findall(rf".{{,{ceil(len(flag) / 3)}}}", flag)))

print("# task1")
m = flag_parts[0]
e = 65537
p = getPrime(1024)
q = getPrime(1024)
r = getPrime(1024)
n1 = p * q
c1 = pow(m, e, n1)
n2 = r * q
c2 = pow(m, e, n2)
print("e =", e)
print("n1 =", n1)
print("c1 =", c1)
print("n2 =", n2)
print("c2 =", c2)

print("# task2")
m = flag_parts[1]
e = 7
p = getPrime(1024)
q = getPrime(1024)
n = p * q
c = pow(m, e, n)
print("e =", e)
print("n =", n)
print("c =", c)

print("# task3")
m = flag_parts[2]
p = getPrime(1024)
q = getPrime(1024)
n = p * q
e1 = getPrime(32)
e2 = getPrime(32)
c1 = pow(m, e1, n)
c2 = pow(m, e2, n)
print("n =", n)
print("e1 =", e1)
print("c1 =", c1)
print("e2 =", e2)
print("c2 =", c2)

# task1
e = 65537
n1 = 14611545605107950827581005165327694782823188603151768169731431418361306231114985037775917461433925308054396970809690804073985835376464629860609710292181368600618626590498491850404503443414241455487304448344892337877422465715709154238653505141605904184985311873763495761345722155289457889686019746663293720106874227323699288277794292208957172446523420596391114891559537811029473150123641624108103676516754449492805126642552751278309634846777636042114135990516245907517377320190091400729277307636724890592155256437996566160995456743018225013851937593886086129131351582958811003596445806061492952513851932238563627194553
c1 = 965075803554932988664271816439183802328812013694203741320763105376036912584995031647672348468111310423680858101990670067065306237596121664884353679987689532305437801346923070145524106271337770666947677115752724993307387122132705797012726237073550669419110046308257408484535063515678066777681017211510981429273346928022971149411064556225001287399141306136081722471075032423079692908380267160214143720516748000734987068685104675254411687005690312116824966036851568223828884335112144637268090397158532937141122654075952730052331573980701136378212002956719295192733955673315234274064519957670199895100508623561838510479
n2 = 20937478725109983803079185450449616567464596961348727453817249035110047585580142823551289577145958127121586792878509386085178452171112455890429474457797219202827030884262273061334752493496797935346631509806685589179618367453992749753318273834113016237120686880514110415113673431170488958730203963489455418967544128619234394915820392908422974075932751838012185542968842691824203206517795693893863945100661940988455695923511777306566419373394091907349431686646485516325575494902682337518438042711296437513221448397034813099279203955535025939120139680604495486980765910892438284945450733375156933863150808369796830892363
c2 = 11536506945313747180442473461658912307154460869003392732178457643224057969838224601059836860883718459986003106970375778443725748607085620938787714081321315817144414115589952237492448483438910378865359239575169326116668030463275817609827626048962304593324479546453471881099976644410889657248346038986836461779780183411686260756776711720577053319504691373550107525296560936467435283812493396486678178020292433365898032597027338876045182743492831814175673834198345337514065596396477709839868387265840430322983945906464646824470437783271607499089791869398590557314713094674208261761299894705772513440948139429011425948090
# task2
e = 7
n = 14157878492255346300993349653813018105991884577529909522555551468374307942096214964604172734381913051273745228293930832314483466922529240958994897697475939867025561348042725919663546949015024693952641936481841552751484604123097148071800416608762258562797116583678332832015617217745966495992049762530373531163821979627361200921544223578170718741348242012164115593777700903954409103110092921578821048933346893212805071682235575813724113978341592885957767377587492202740185970828629767501662195356276862585025913615910839679860669917255271734413865211340126544199760628445054131661484184876679626946360753009512634349537
c = 10262871020519116406312674685238364023536657841034751572844570983750295909492149101500869806418603732181350082576447594766587572350246675445508931577670158295558641219582729345581697448231116318080456112516700717984731655900726388185866905989088504004805024490513718243036445638662260558477697146032055765285263446084259814560197549018044099935158351931885157616527235283229066145390964094929007056946332051364474528453970904251050605631514869007890625
# task3
n = 18819509188106230363444813350468162056164434642729404632983082518225388069544777374544142317612858448345344137372222988033366528086236635213756227816610865045924357232188768913642158448603346330462535696121739622702200540344105464126695432011739181531217582949804939555720700457350512898322376591813135311921904580338340203569582681889243452495363849558955947124975293736509426400460083981078846138740050634906824438689712748324336878791622676974341814691041262280604277357889892211717124319329666052810029131172229930723477981468761369516771720250571713027972064974999802168017946274736383148001865929719248159075729
e1 = 2519901323
c1 = 3230779726225544872531441169009307072073754578761888387983403206364548451496736513905460381907928107310030086346589351105809028599650303539607581407627819797944337398601400510560992462455048451326593993595089800150342999021874734748066692962362650540036002073748766509347649818139304363914083879918929873577706323599628031618641793074018304521243460487551364823299685052518852685706687800209505277426869140051056996242882132616256695188870782634310362973153766698286258946896866396670872451803114280846709572779780558482223393759475999103607704510618332253710503857561025613632592682931552228150171423846203875344870
e2 = 3676335737
c2 = 940818595622279161439836719641707846790294650888799822335007385854166736459283129434769062995122371073636785371800857633841379139761091890426137981113087519934854663776695944489430385663011713917022574342380155718317794204988626116362865144125136624722782309455452257758808172415884403909840651554485364309237853885251876941477098008690389600544398998669635962495989736021020715396415375890720335697504837045188626103142204474942751410819466379437091569610294575687793060945525108986660851277475079994466474859114092643797418927645726430175928247476884879817034346652560116597965191204061051401916282814886688467861

2.解题

flag_parts = list(map(s2n, re.findall(rf".{{,{ceil(len(flag) / 3)}}}", flag)))

  • list():这是一个将可迭代对象转换为列表的函数。它将 `re.findall()` 返回的匹配结果(一个可迭代对象)转换为一个列表。
  • map(s2n, ...): 这是一个映射函数,它将一个函数应用于可迭代对象的每个元素。在这里,`s2n` 是一个函数,它将字符串转换为数字。`map()` 函数将 `s2n` 应用于 `re.findall()` 返回的每个子串,将其转换为数字。

  • re.findall(rf".{{,{ceil(len(flag) / 3)}}}", flag)`: 这是一个正则表达式的匹配操作。它使用了一个正则表达式模式来查找字符串 `flag` 中的子串。模式为 `.{{,{ceil(len(flag) / 3)}}}"`,其中 `.` 表示匹配任意字符,`{}` 表示匹配前面的字符指定的次数,`ceil(len(flag) / 3)` 是一个向上取整的操作,用于确定匹配的最大长度。这个操作的目的是将 `flag` 分割成长度不超过 `ceil(len(flag) / 3)` 的子串。

    综上所述,这段代码的作用是将字符串 `flag` 分割成长度不超过 `ceil(len(flag) / 3)` 的子串,并将每个子串转换为数字,最后将这些数字存储在一个列表 `flag_parts` 中。

将flag分为三部分,每一部分分别进行加密:

第一部分:两组n,c,每组q相同,是共享素数

第二部分:e很小,是低加密指数攻击

第三部分:两组e,c,每组n相同,是共模攻击

分别将每一部分进行解密后,将明文拼接起来,就是flag

3.

import gmpy2
import libnum
import binascii

# task1
e1 = 65537
n1 = 14611545605107950827581005165327694782823188603151768169731431418361306231114985037775917461433925308054396970809690804073985835376464629860609710292181368600618626590498491850404503443414241455487304448344892337877422465715709154238653505141605904184985311873763495761345722155289457889686019746663293720106874227323699288277794292208957172446523420596391114891559537811029473150123641624108103676516754449492805126642552751278309634846777636042114135990516245907517377320190091400729277307636724890592155256437996566160995456743018225013851937593886086129131351582958811003596445806061492952513851932238563627194553
c1 = 965075803554932988664271816439183802328812013694203741320763105376036912584995031647672348468111310423680858101990670067065306237596121664884353679987689532305437801346923070145524106271337770666947677115752724993307387122132705797012726237073550669419110046308257408484535063515678066777681017211510981429273346928022971149411064556225001287399141306136081722471075032423079692908380267160214143720516748000734987068685104675254411687005690312116824966036851568223828884335112144637268090397158532937141122654075952730052331573980701136378212002956719295192733955673315234274064519957670199895100508623561838510479
n2 = 20937478725109983803079185450449616567464596961348727453817249035110047585580142823551289577145958127121586792878509386085178452171112455890429474457797219202827030884262273061334752493496797935346631509806685589179618367453992749753318273834113016237120686880514110415113673431170488958730203963489455418967544128619234394915820392908422974075932751838012185542968842691824203206517795693893863945100661940988455695923511777306566419373394091907349431686646485516325575494902682337518438042711296437513221448397034813099279203955535025939120139680604495486980765910892438284945450733375156933863150808369796830892363
c2 = 11536506945313747180442473461658912307154460869003392732178457643224057969838224601059836860883718459986003106970375778443725748607085620938787714081321315817144414115589952237492448483438910378865359239575169326116668030463275817609827626048962304593324479546453471881099976644410889657248346038986836461779780183411686260756776711720577053319504691373550107525296560936467435283812493396486678178020292433365898032597027338876045182743492831814175673834198345337514065596396477709839868387265840430322983945906464646824470437783271607499089791869398590557314713094674208261761299894705772513440948139429011425948090
# task2
e2 = 7
n = 14157878492255346300993349653813018105991884577529909522555551468374307942096214964604172734381913051273745228293930832314483466922529240958994897697475939867025561348042725919663546949015024693952641936481841552751484604123097148071800416608762258562797116583678332832015617217745966495992049762530373531163821979627361200921544223578170718741348242012164115593777700903954409103110092921578821048933346893212805071682235575813724113978341592885957767377587492202740185970828629767501662195356276862585025913615910839679860669917255271734413865211340126544199760628445054131661484184876679626946360753009512634349537
c = 10262871020519116406312674685238364023536657841034751572844570983750295909492149101500869806418603732181350082576447594766587572350246675445508931577670158295558641219582729345581697448231116318080456112516700717984731655900726388185866905989088504004805024490513718243036445638662260558477697146032055765285263446084259814560197549018044099935158351931885157616527235283229066145390964094929007056946332051364474528453970904251050605631514869007890625
# task3
n3 = 18819509188106230363444813350468162056164434642729404632983082518225388069544777374544142317612858448345344137372222988033366528086236635213756227816610865045924357232188768913642158448603346330462535696121739622702200540344105464126695432011739181531217582949804939555720700457350512898322376591813135311921904580338340203569582681889243452495363849558955947124975293736509426400460083981078846138740050634906824438689712748324336878791622676974341814691041262280604277357889892211717124319329666052810029131172229930723477981468761369516771720250571713027972064974999802168017946274736383148001865929719248159075729
e3 = 2519901323
c3 = 3230779726225544872531441169009307072073754578761888387983403206364548451496736513905460381907928107310030086346589351105809028599650303539607581407627819797944337398601400510560992462455048451326593993595089800150342999021874734748066692962362650540036002073748766509347649818139304363914083879918929873577706323599628031618641793074018304521243460487551364823299685052518852685706687800209505277426869140051056996242882132616256695188870782634310362973153766698286258946896866396670872451803114280846709572779780558482223393759475999103607704510618332253710503857561025613632592682931552228150171423846203875344870
e4 = 3676335737
c4 = 940818595622279161439836719641707846790294650888799822335007385854166736459283129434769062995122371073636785371800857633841379139761091890426137981113087519934854663776695944489430385663011713917022574342380155718317794204988626116362865144125136624722782309455452257758808172415884403909840651554485364309237853885251876941477098008690389600544398998669635962495989736021020715396415375890720335697504837045188626103142204474942751410819466379437091569610294575687793060945525108986660851277475079994466474859114092643797418927645726430175928247476884879817034346652560116597965191204061051401916282814886688467861

# task1——共享素数
q = gmpy2.gcd(n1, n2)
p = n1 // q
phi = (p-1)*(q-1)
d = gmpy2.invert(e1, phi)
m1 = gmpy2.powmod(c1, d, n1)
print(libnum.n2s(int(m1)))

# task2——低加密指数攻击
def low_exponent_attack(n, c):
    i = 0
    while True:
        if gmpy2.iroot(c+i*n,7)[1] == True :   # gmpy2.iroot(x,n) x开n次根,返回结果和布尔值
            m = gmpy2.iroot((c+i*n), 7)[0]
            break
        i += 1
    print(binascii.unhexlify(hex(m)[2:]))


m2 = low_exponent_attack(n, c)

# task3——共模攻击
def common_mode_attack(c1, c2, n, e1, e2):
    s = gmpy2.gcdext(e1, e2)
    m1 = gmpy2.powmod(c1, s[1], n)
    m2 = gmpy2.powmod(c2, s[2], n)
    m = (m1*m2) % n
    print(libnum.n2s(int(m)))


m3 = common_mode_attack(c3, c4, n3, e3, e4)

NSSCTF{RsA@hAS!a&VArIETYof.AttacK^mEThodS^whAT:other!AttACK|METHOdS~do@you_KNOW}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值