word2vec原理(三)基于Negative Sampling 的模型


此章节将介绍基于Negative Sampling的CBOW和skip-gram模型。Negative Sampling(简称NEG)是Tomas Mikolov等人提出的,它是NCG(Noise Contrastive Estimation)的一个简化版本,目的是为了提高模型的训练速度和改善所得词向量的质量。与Hierarchical Softmax相比,NEG不再使用复杂的huffman树,而是采用随机负采样,能大幅度提高性能,因而成为了hierarchical Softman的一种替代。

1.CBOW模型

在cbow模型中,已知词的上下文 c o n t e x t ( w ) context(w) context(w),需要预测 w w w,因此,对于给定的 c o n t e x t ( w ) context(w) context(w),词 w w w就是一个正样本,其他词就是负样本,但是负样本那么多,该如何选取呢?这个就得说负采样算法了,此处先略过,先讲解一下基于negative sampling的原理。

1.1cbow原理

假定现在已经选好了一个关于 w w w的负采样子集 N E G ( w ) ≠ ∅ NEG(w)\neq \emptyset NEG(w)=,且对 ∀ w ~ ∈ D \forall \widetilde{w} \in D w D,定义
L w ( w ~ ) = { 1 w ~ = w 0 w ~ ≠ w L^w(\widetilde{w})= \begin{cases} 1& \widetilde{w}=w\\ 0& \widetilde{w}\neq w \end{cases} Lw(w )={10w =ww =w
表示词 w ~ \widetilde{w} w 的标签,即正样本的标签为1,负样本的标签为0.
对于一个给定的正样本 ( c o n t e x t ( w ) , w ) (context(w),w) (context(w),w),我们希望最大化
g ( w ) = ∏ u ∈ w ⋃ N E G ( w ) p ( u ∣ c o n t e x t ( w ) ) g(w) = \prod_{u \in w\bigcup NEG(w)} p(u|context(w)) g(w)=uwNEG(w)p(ucontext(w))
其中
p ( u ∣ c o n t e x t ( w ) ) = { σ ( x w T θ u ) L w ( u ) = 1 1 − σ ( x w T θ u ) L w ( u ) = 0 p(u|context(w))= \begin{cases} \sigma(x_w^T \theta^u)& L^w(u)=1\\ 1-\sigma(x_w^T \theta^u)& L^w(u)=0 \end{cases} p(ucontext(w))={σ(xwTθu)1σ(xwTθu)Lw(u)=1Lw(u)=0
或者写成整体表达式
p ( u ∣ c o n t e x t ( w ) ) = [ σ ( x w T θ u ) ] L w ( u ) ⋅ [ 1 − σ ( x w T θ u ) ] 1 − L w ( u ) p(u|context(w)) = [\sigma(x_w^T \theta^u)]^{L^w(u)} \cdot [1-\sigma(x_w^T \theta^u)]^{1-L^w(u)} p(ucontext(w))=[σ(xwTθu)]Lw(u)[1σ(xwTθu)]1Lw(u)
这里 x w x_w xw扔表示 c o n t e x t ( w ) context(w) context(w)中各词的词向量之和,而 θ u ∈ R m \theta^u \in \mathbb{R}^m θuRm表示词 u u u对应的一个向量,为待训练参数
为什么要最大化 g ( w ) g(w) g(w)?首先可以看看 g ( w ) g(w) g(w)的表达式
g ( w ) = σ ( x w T θ w ) ∏ u ∈ N E G ( w ) [ 1 − σ ( x w T θ u ) ] g(w) = \sigma(x_w^T \theta^w) \prod_{u \in NEG(w)}[1-\sigma(x_w^T \theta^u)] g(w)=σ(xwTθw)uNEG(w)[1σ(xwTθu)]
其中 σ ( x w T θ w ) \sigma(x_w^T \theta^w) σ(xwTθw)表示上下文为 c o n t e x t ( w ) context(w) context(w)时,预测中心词为 w w w的概率,而 σ ( x w T θ u ) , u ∈ N E G ( w ) \sigma(x_w^T \theta^u),u \in NEG(w) σ(xwTθu),uNEG(w)则表示当上下文为 c o n t e x t ( w ) context(w) context(w)时,预测中心词为 u u u的概率(此处可以看做是一个二分类问题,最大似然函数).从形式上看,最大化 g ( w ) g(w) g(w),相当于最大化 σ ( x w T θ w ) \sigma(x_w^T \theta^w) σ(xwTθw),同时最小化所有的 σ ( x w T θ u ) , u ∈ N E G ( w ) \sigma(x_w^T \theta^u),u\in NEG(w) σ(xwTθu),uNEG(w).这不正是我们希望的:增大正样本的概率的同时降低负样本的概率。
于是,对于一个语料库C,函数
G = ∏ w ∈ c g ( w ) G = \prod_{w \in c} g(w) G=wcg(w)
就可以作为整体优化的目标,为了计算方便,对G取对数,最终的目标函数就是
L = l o g G = l o g ∏ w ∈ C g ( w ) = ∑ w ∈ C l o g g ( w ) = ∑ w ∈ C l o g ∏ u ∈ { w } ⋃ N E G ( w ) { [ σ ( x w T θ u ) ] L w ( u ) ⋅ [ 1 − σ ( x w T θ u ) ] 1 − L w ( u ) } = ∑ w ∈ C ∑ u ∈ { w } ⋃ N E G ( w ) { L w ( u ) ⋅ l o g [ σ ( x w T θ u ) ] + [ 1 − L w ( u ) ] ⋅ l o g [ 1 − σ ( x w T θ u ) ] } \begin{aligned} L = logG & = log \prod_{w \in C} g(w) \\ &= \sum_{w \in C} log \quad g(w) \\ &= \sum_{w \in C} log \prod_{u \in\{w\}\bigcup NEG(w) } \{ [\sigma(x_w^T \theta^u)]^{L^w(u)} \cdot [1-\sigma(x_w^T \theta^u)]^{1-L^w(u)}\} \\ &= \sum_{w \in C} \sum_{u \in\{w\}\bigcup NEG(w) } \{ L^w(u) \cdot log[\sigma(x_w^T \theta^u)] +[1-L^w(u) ] \cdot log[1-\sigma(x_w^T \theta^u)]\} \end{aligned} L=logG=logwCg(w)=wClogg(w)=wClogu{w}NEG(w){[σ(xwTθu)]Lw(u)[1σ(xwTθu)]1Lw(u)}=wCu{w}NEG(w){Lw(u)log[σ(xwTθu)]+[1Lw(u)]log[1σ(xwTθu)]}

1.2 cbow 梯度上升

为了梯度推导方便,令
L ( w , u ) = L w ( u ) ⋅ l o g [ σ ( x w T θ u ) ] + [ 1 − L w ( u ) ] ⋅ l o g [ 1 − σ ( x w T θ u ) ] L(w,u) = L^w(u) \cdot log[\sigma(x_w^T \theta^u)] +[1-L^w(u) ] \cdot log[1-\sigma(x_w^T \theta^u)] L(w,u)=Lw(u)log[σ(xwTθu)]+[1Lw(u)]log[1σ(xwTθu)]
接下来利用随机梯度上升法计算梯度
∂ L ( w , u ) ∂ θ u = ∂ ∂ θ U { L w ( u ) ⋅ l o g [ σ ( x w T θ u ) ] + [ 1 − L w ( u ) ] ⋅ l o g [ 1 − σ ( x w T θ u ) ] } = L w ( u ) [ 1 − σ ( x w T θ u ) ] x w − [ 1 − L w ( u ) ] σ ( x w T θ u ) x w = { L w ( u ) [ 1 − σ ( x w T θ u ) ] − [ 1 − L w ( u ) ] σ ( x w T θ u ) } x w = [ L w ( u ) − σ ( x w T θ u ) ] x w \begin{aligned} \frac{ \partial L(w,u)}{ \partial \theta^u} & = \frac{ \partial }{ \partial \theta^U} \{ L^w(u) \cdot log[\sigma(x_w^T \theta^u)] +[1-L^w(u) ] \cdot log[1-\sigma(x_w^T \theta^u)] \} \\ &= L^w(u) [1-\sigma(x_w^T \theta^u)]x_w - [1-L^w(u)] \sigma(x_w^T \theta^u) x_w\\ &= \{L^w(u) [1-\sigma(x_w^T \theta^u)] - [1-L^w(u)] \sigma(x_w^T \theta^u) \}x_w \\ &= [L^w(u) - \sigma(x_w^T \theta^u) ]x_w \end{aligned} θuL(w,u)=θU{Lw(u)log[σ(xwTθu)]+[1Lw(u)]log[1σ(xwTθu)]}=Lw(u)[1σ(xwTθu)]xw[1Lw(u)]σ(xwTθu)xw={Lw(u)[1σ(xwTθu)][1Lw(u)]σ(xwTθu)}xw=[Lw(u)σ(xwTθu)]xw
于是, θ u \theta^u θu的更新公式可以写为
θ u : = θ u + η [ L w ( u ) − σ ( x w T θ u ) ] x w \theta^u:=\theta^u + \eta[L^w(u) - \sigma(x_w^T \theta^u) ]x_w θu:=θu+η[Lw(u)σ(xwTθu)]xw

∂ L ( w , u ) ∂ x u = [ L w ( u ) − σ ( x w T θ u ) ] θ u \frac{ \partial L(w,u)}{ \partial x_u}= [L^w(u) - \sigma(x_w^T \theta^u)]\theta^u xuL(w,u)=[Lw(u)σ(xwTθu)]θu
于是利用 ∂ L ( w , u ) ∂ x u \frac{ \partial L(w,u)}{ \partial x_u} xuL(w,u)可得 v ( w ~ ) , w ~ ∈ c o n t e x t ( w ) v(\widetilde{w}),\widetilde{w} \in context(w) v(w ),w context(w)的更新公式
v ( w ~ ) : = v ( w ~ ) + η ∑ u ∈ w ⋃ N E G ( w ) ∂ L ( w , u ) ∂ x w , w ~ ∈ c o n t e x t ( w ) v(\widetilde{w}) := v(\widetilde{w}) + \eta \sum_{u \in w\bigcup NEG(w)} \frac{ \partial L(w,u)}{ \partial x_w},\widetilde{w} \in context(w) v(w ):=v(w )+ηuwNEG(w)xwL(w,u),w context(w)

1.3 cbow更新伪代码

  1. e=0
  2. x w = ∑ u ∈ c o n t e x t ( w ) v ( u ) x_w = \sum_{u \in context(w)} v(u) xw=ucontext(w)v(u)
  3. For u ∈ w ⋃ N E G ( w ) D O \quad u \in w\bigcup NEG(w) DO uwNEG(w)DO
    {
    3.1 q = σ ( x w T θ u ) \quad q = \sigma(x_w^T \theta^u) q=σ(xwTθu)
    3.2 g = η ( L w ( u ) − q ) \quad g= \eta (L^w(u) - q) g=η(Lw(u)q)
    3.3 e : = e + g θ u \quad e:=e+g \theta^{u} e:=e+gθu
    3.4 θ u : = θ u + g x w \quad \theta^{u}:=\theta^{u} + gx_w θu:=θu+gxw
    }
  4. For u ∈ c o n t e x t ( w ) \quad u \in context(w) ucontext(w)
    {
    v ( u ) : = v ( u ) + e \qquad v(u):=v(u) + e v(u):=v(u)+e
    }
    注释:结合伪代码,给出与word2vec源码中的对应关系如下:syn0对应 v ( ⋅ ) v(\cdot) v(),syn1neg对应 θ u \theta^{u} θu,neu1对应 x w x_w xw,neu1e对应e

2. skip-gram模型

此章节将介绍基于negative sampling的skip-gram模型。
skip-gram模型:在已经中心词 w w w的前提下,预测 w w w的背景词 c o n t e x t ( w ) context(w) context(w)的词向量

2.1 skip-gram 原理

首先,定义目标函数为
G = ∏ w ∈ C ∏ w ∈ c o n t e x t ( w ) g ( u ) G = \prod_{w \in C} \prod_{w \in context(w)} g(u) G=wCwcontext(w)g(u)
这里, ∏ w ∈ c o n t e x t ( w ) g ( u ) \prod_{w \in context(w)} g(u) wcontext(w)g(u)表示对于一个给定的样本 ( w , c o n t e x t ( w ) ) (w,context(w)) (w,context(w)),我们希望最大化的量
g ( u ) = ∏ z ∈ { u } ⋃ N E G ( w ) p ( z ∣ w ) g(u) = \prod_{z \in \{u\} \bigcup NEG(w)} p(z|w) g(u)=z{u}NEG(w)p(zw)
其中 N E G ( w ) NEG(w) NEG(w)表示处理词u时生成的负样本子集,条件概率为
p ( z ∣ w ) = { σ ( v w T θ z ) L u ( z ) = 1 1 − σ ( v w T θ z ) L u ( z ) = 0 p(z|w)= \begin{cases} \sigma(v_w^T \theta^z)& L^u(z)=1\\ 1-\sigma(v_w^T \theta^z)& L^u(z)=0 \end{cases} p(zw)={σ(vwTθz)1σ(vwTθz)Lu(z)=1Lu(z)=0
或者写成整体表达式
p ( z ∣ w ) = [ σ ( v w T θ z ) ] L u ( z ) ⋅ [ 1 − σ ( x w T θ z ) ] 1 − L u ( z ) p(z|w) = [\sigma(v_w^T \theta^z)]^{L^u(z)} \cdot [1-\sigma(x_w^T \theta^z)]^{1-L^u(z)} p(zw)=[σ(vwTθz)]Lu(z)[1σ(xwTθz)]1Lu(z)
同时,我们取G的对数,则最终的目标函数为
L = l o g G = l o g ∏ w ∈ C ∏ u ∈ c o n t e x t ( w ) g ( u ) = ∑ w ∈ C ∑ u ∈ c o n t e x t ( w ) l o g   g ( u ) = ∑ w ∈ C ∑ u ∈ c o n t e x t ( w ) l o g ∏ z ∈ { u } ⋃ N E G ( u ) p ( z ∣ w ) = ∑ w ∈ C ∑ u ∈ c o n t e x t ( w ) ∑ z ∈ { u } ⋃ N E G ( u ) l o g { [ σ ( v w T θ z ) ] L u ( z ) ⋅ [ 1 − σ ( x w T θ z ) ] 1 − L u ( z ) } = ∑ w ∈ C ∑ u ∈ c o n t e x t ( w ) ∑ z ∈ { u } ⋃ N E G ( u ) { L u ( z ) ⋅ l o g [ σ ( v w T θ z ) ] + [ 1 − L u ( z ) ] ⋅ l o g [ 1 − σ ( v w T θ z ) ] } \begin{aligned} L = logG & = log \prod_{w \in C} \prod_{u \in context(w)} g(u) \\ &= \sum_{w \in C} \sum_{u \in context(w)} log \ g(u) \\ &= \sum_{w \in C} \sum_{u \in context(w)} log \prod_{z \in \{u\} \bigcup NEG(u)} p(z|w) \\ &= \sum_{w \in C} \sum_{u \in context(w)} \sum_{z \in \{u\} \bigcup NEG(u)} log\{[\sigma(v_w^T \theta^z)]^{L^u(z)} \cdot [1-\sigma(x_w^T \theta^z)]^{1-L^u(z)} \} \\ &= \sum_{w \in C} \sum_{u \in context(w)} \sum_{z \in \{u\} \bigcup NEG(u)} \{L^u(z) \cdot log[\sigma(v_w^T \theta^z)] + [1-L^u(z)] \cdot log[1-\sigma(v_w^T \theta^z)]\} \end{aligned} L=logG=logwCucontext(w)g(u)=wCucontext(w)log g(u)=wCucontext(w)logz{u}NEG(u)p(zw)=wCucontext(w)z{u}NEG(u)log{[σ(vwTθz)]Lu(z)[1σ(xwTθz)]1Lu(z)}=wCucontext(w)z{u}NEG(u){Lu(z)log[σ(vwTθz)]+[1Lu(z)]log[1σ(vwTθz)]}

2.2 skip-gram 随机梯度上升法

值得一提的是,word2vec源码中基于negative sampling 的skip-gram模型并不是基于此目标函数进行编程的,因为如果是基于上述目标函数进行编程的话,那么对于每个 ( w , c o n t e x t ( w ) ) (w,context(w)) (w,context(w)),需要针对 c o n t e x t ( w ) context(w) context(w)中的每一个词进行负采样,而word2vec源码中只是针对 w w w进行了 ∣ c o n t e x t ( w ) ∣ 次 负 采 样 |context(w)|次负采样 context(w)
那么,word2vec源码这一块的依据是什么?
与hierachical softmax的skip-gram一样的处理方式,因为我们希望
∏ w ∈ C ∏ u ∈ c o n t e x t ( w ) p ( u ∣ w ) \prod_{w \in C} \prod_{u \in context(w)} p(u|w) wCucontext(w)p(uw)
最大的同时,也希望
∏ w ∈ C p ( w ∣ c o n t e x t ( w ) ) \prod_{w \in C} p(w|context(w)) wCp(wcontext(w))
最大。
所以,skip-gram在源码中实际用的还是cbow模型,只是将原本通过求均值做整体用的上下文 c o n t e x t ( w ) context(w) context(w)直接输入,相当于输入从1个均值向量变成了2c个词自身的词向量。
首先,我们希望最大化
g ( w ) = ∏ w ~ ∈ c o n t e x t ( w ) ∏ u ∈ { w } ⋃ N E G w ~ ( w ) p ( u ∣ w ~ ) g(w) = \prod_{\widetilde{w} \in context(w)} \prod_{u \in\{w\}\bigcup NEG^{\widetilde{w}}(w) } p(u|\widetilde{w}) g(w)=w context(w)u{w}NEGw (w)p(uw )
其中
p ( u ∣ w ~ ) = { σ ( v w ~ T θ u ) L w ( u ) = 1 1 − σ ( v w ~ T θ u ) L w ( u ) = 0 p(u|\widetilde{w})= \begin{cases} \sigma(v_{\widetilde{w}}^T \theta^u)& L^w(u)=1\\ 1-\sigma(v_{\widetilde{w}}^T \theta^u)& L^w(u)=0 \end{cases} p(uw )={σ(vw Tθu)1σ(vw Tθu)Lw(u)=1Lw(u)=0
或者写成整体表达式
p ( u ∣ w ~ ) = [ σ ( v w ~ T θ u ] L w ( u ) ⋅ [ 1 − σ ( v w ~ ] 1 − L w ( u ) p(u|\widetilde{w}) = [\sigma(v_{\widetilde{w}}^T \theta^u]^{L^w(u)} \cdot [1-\sigma(v_{\widetilde{w}]}^{1-L^w(u)} p(uw )=[σ(vw Tθu]Lw(u)[1σ(vw ]1Lw(u)
这里 N E G w ~ ( w ) NEG^{\widetilde{w}}(w) NEGw (w)表示词 w ~ \widetilde{w} w 时生成的负样本子集,于是对于一个给定的语料库C,函数
G = ∏ w ∈ C g ( w ) G = \prod_{w \in C} g(w) G=wCg(w)
就可以作为整体优化的目标。同样,我们取G的对数,最终的目标函数就是
L = l o g G = l o g ∏ w ∈ C g ( w ) = ∑ w ∈ C l o g g ( w ) = ∑ w ∈ C l o g ∏ w ~ ∈ c o n t e x t ( w ) ∏ u ∈ { w } ⋃ N E G w ~ ( w ) { [ σ ( v w ~ T θ u ) ] L w ( u ) ⋅ [ 1 − σ ( v w ~ T θ u ) ] 1 − L w ( u ) } = ∑ w ∈ C ∑ w ~ ∈ c o n t e x t ( w ) ∏ u ∈ { w } ⋃ N E G w ~ ( w ) { L w ( u ) ⋅ l o g [ σ ( v w ~ T θ u ) ] + [ 1 − L w ( u ) ] ⋅ l o g [ 1 − σ ( v w ~ T θ u ) ] } \begin{aligned} L = logG & = log \prod_{w \in C} g(w) \\ &= \sum_{w \in C} log \quad g(w) \\ &= \sum_{w \in C} log \prod_{\widetilde{w} \in context(w) } \prod_{u \in\{w\}\bigcup NEG^{\widetilde{w}}(w) } \{ [\sigma(v_{\widetilde{w}}^T \theta^u)]^{L^w(u)} \cdot [1-\sigma(v_{\widetilde{w}}^T \theta^u)]^{1-L^w(u)}\} \\ &= \sum_{w \in C} \sum_{\widetilde{w} \in context(w) } \prod_{u \in\{w\}\bigcup NEG^{\widetilde{w}}(w) } \{ L^w(u) \cdot log[\sigma(v_{\widetilde{w}}^T \theta^u)] +[1-L^w(u) ] \cdot log[1-\sigma(v_{\widetilde{w}}^T \theta^u)]\} \end{aligned} L=logG=logwCg(w)=wClogg(w)=wClogw context(w)u{w}NEGw (w){[σ(vw Tθu)]Lw(u)[1σ(vw Tθu)]1Lw(u)}=wCw context(w)u{w}NEGw (w){Lw(u)log[σ(vw Tθu)]+[1Lw(u)]log[1σ(vw Tθu)]}
为了方便起见,将三重求和符号下花括号里的内容简记为 L ( w , w ~ , u ) L(w,\widetilde{w},u) L(w,w ,u),即
L ( w , w ~ , u ) = L w ( u ) ⋅ l o g [ σ ( v w ~ T θ u ) ] + [ 1 − L w ( u ) ] ⋅ l o g [ 1 − σ ( v w ~ T θ u ) ] L(w,\widetilde{w},u) = L^w(u) \cdot log[\sigma(v_{\widetilde{w}}^T \theta^u)] +[1-L^w(u) ] \cdot log[1-\sigma(v_{\widetilde{w}}^T \theta^u)] L(w,w ,u)=Lw(u)log[σ(vw Tθu)]+[1Lw(u)]log[1σ(vw Tθu)]
接下来利用随机梯度上升法对此目标哦函数进行优化。
∂ L ( w , w ~ , u ) ∂ θ u = ∂ ∂ θ u { L w ( u ) ⋅ l o g [ σ ( v w ~ T θ u ) ] + [ 1 − L w ( u ) ] ⋅ l o g [ 1 − σ ( v w ~ T θ u ) ] } = L w ( u ) [ 1 − σ ( v w ~ T θ u ) ] v w ~ − [ 1 − L w ( u ) ] σ ( v w ~ T θ u ) v w ~ = { L w ( u ) [ 1 − σ ( v w ~ T θ u ) ] − [ 1 − L w ( u ) ] σ ( v w ~ T θ u ) } v w ~ = [ L w ( u ) − σ ( v w ~ T θ u ) ] v w ~ \begin{aligned} \frac{ \partial L(w,\widetilde{w},u)}{ \partial \theta^u} & = \frac{ \partial }{ \partial \theta^u} \{ L^w(u) \cdot log[\sigma(v_{\widetilde{w}}^T \theta^u)] +[1-L^w(u) ] \cdot log[1-\sigma(v_{\widetilde{w}}^T \theta^u)] \} \\ &= L^w(u) [1-\sigma(v_{\widetilde{w}}^T \theta^u)]v_{\widetilde{w}} - [1-L^w(u)] \sigma(v_{\widetilde{w}}^T \theta^u) v_{\widetilde{w}}\\ &= \{L^w(u) [1-\sigma(v_{\widetilde{w}}^T \theta^u)] - [1-L^w(u)] \sigma(v_{\widetilde{w}}^T \theta^u) \}v_{\widetilde{w}} \\ &= [L^w(u) - \sigma(v_{\widetilde{w}}^T \theta^u) ]v_{\widetilde{w}} \end{aligned} θuL(w,w ,u)=θu{Lw(u)log[σ(vw Tθu)]+[1Lw(u)]log[1σ(vw Tθu)]}=Lw(u)[1σ(vw Tθu)]vw [1Lw(u)]σ(vw Tθu)vw ={Lw(u)[1σ(vw Tθu)][1Lw(u)]σ(vw Tθu)}vw =[Lw(u)σ(vw Tθu)]vw
于是, θ u \theta^u θu的更新公式可以写为
θ u : = θ u + η [ L w ( u ) − σ ( v w ~ T θ u ) ] v w ~ \theta^u:=\theta^u + \eta[L^w(u) - \sigma(v_{\widetilde{w}}^T \theta^u) ]v_{\widetilde{w}} θu:=θu+η[Lw(u)σ(vw Tθu)]vw

∂ L ( w , w ~ , u ) ∂ v w ~ = [ L w ( u ) − σ ( v w ~ T θ u ) ] θ u \frac{ \partial L(w,\widetilde{w},u)}{ \partial v_{\widetilde{w}}}= [L^w(u) - \sigma(v_{\widetilde{w}}^T \theta^u)]\theta^u vw L(w,w ,u)=[Lw(u)σ(vw Tθu)]θu
于是利用 ∂ L ( w , w ~ , u ) ∂ x u \frac{ \partial L(w,\widetilde{w},u)}{ \partial x_u} xuL(w,w ,u)可得 v ( w ~ ) , w ~ ∈ c o n t e x t ( w ) v(\widetilde{w}),\widetilde{w} \in context(w) v(w ),w context(w)的更新公式
v ( w ~ ) : = v ( w ~ ) + η ∑ u ∈ w ⋃ N E G w ~ ( w ) ∂ L ( w , w ~ , u ) ∂ v w ~ , w ~ ∈ c o n t e x t ( w ) v(\widetilde{w}) := v(\widetilde{w}) + \eta \sum_{u \in w\bigcup NEG^{\widetilde{w}}(w)} \frac{ \partial L(w,\widetilde{w},u)}{ \partial v_{\widetilde{w}}},\widetilde{w} \in context(w) v(w ):=v(w )+ηuwNEGw (w)vw L(w,w ,u),w context(w)

2.3 skip-gram 参数更新伪代码

{
f o r w ~ = c o n t e x t ( w ) D O for \quad \widetilde{w} =context(w) \quad DO forw =context(w)DO
e = 0 \qquad e=0 e=0
f o r u = { w } ⋃ N E G w ~ ( w ) D O \qquad for \quad u = \{w\} \bigcup NEG^{\widetilde{w}}(w) \quad DO foru={w}NEGw (w)DO
q = σ ( v w ~ T θ u ) \qquad \qquad q = \sigma(v_{\widetilde{w}}^T \theta^u) q=σ(vw Tθu)
g = η ( L w ( u ) − q ) \qquad \qquad g = \eta (L^w(u)- q) g=η(Lw(u)q)
e : = e + g θ u \qquad\qquad e:=e+g \theta^{u} e:=e+gθu
θ u : = θ u + g v w ~ \qquad\qquad \theta^{u}:=\theta^{u} + gv_{\widetilde{w}} θu:=θu+gvw
v w ~ : = v w ~ + e \qquad\qquad v_{\widetilde{w}}:= v_{\widetilde{w}}+e vw :=vw +e
}

3.负采样算法

顾名思义,在基于negative sampling的CBOW和skip-gram模型中,负采样是重要的环节,对定一个给定的词 w w w,如何生成 N E G ( w ) NEG(w) NEG(w)呢?

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值