104. 二叉树的最大深度 - 力扣(LeetCode)
看题解前:这里需要知道什么是深度,什么是高度。深度指的是从根结点出发到叶子结点中间的节点个数;高度指的是从该节点出发到叶子节点中间的个数。所以说根节点的高度也就是该二叉树的深度。采用递归的办法,求出左子树的高度和右子树的高度,取较大值最后+1即为该二叉树的深度。
看题解后:题解递归方法大差不差,就是更加简化了步骤。
除此之外还提供了一个广度优先搜索的方法。
这里的广度优先搜索有点类似上一篇当用使用队列进行层序遍历,差异点就在于定义了一个ans,在每一层遍历完成后对ans+=1即可。
111. 二叉树的最小深度 - 力扣(LeetCode)
看题解前:初看跟上面那个差不多,感觉把max改成min即可;然后过不了,无法判断
这样的二叉树。这个时候需要判断什么时候才是最低点。如果左子树为空,右子树不为空,此时应该返回右子树的高度,相反则返回左子树的高度。此时即可编译通过了。
看题解后:题解也是给出了精简代码,没有使用子函数,直接开始递归调用。
222. 完全二叉树的节点个数 - 力扣(LeetCode)
看题解前:可以用层序遍历的方法,在队列中每插入一个就cnt++即可,肯定可以做出来。然后就是想到了递归,总节点个数为左子树节点+右子树节点+1。
看题解后:依旧给出了递归和迭代两个方法,递归就是上述方法,给出了简化版本:
整体思路跟上面一样的。迭代也就是上述提到的层序遍历++cnt(前中后序也是一样的,总思想就是遍历计数)。