自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 代价函数L对权重W求导

运用的是元素对矩阵的求导法则

2017-11-08 16:20:46 1786

原创 CS231N lecture7 notes

- convolutional layer第一个卷积层重构了x,x,3的图像为y,y,z, 再把yyzpadding 保持图片的空间大小不变,否则会越变越小。filter的个数,padding(一般用0)是超参数。PPT里面有个summary。有时候会做 1x1的卷积:因为这时是在depth的方向上做卷积,所以这时候仍然是有意义的。有同学问到为什么滤波器边长总是odd:一般

2017-10-30 15:24:12 263

转载 231N Lec6 课程笔记

转自http://m.blog.csdn.net/fffupeng/article/details/73440929momentum update理解:在某个方向上震荡较大的时候,momentum会进行抵消,震荡较小时,momentum update会进行增加。可以自己进行一两个iteration进行推到。

2017-10-28 16:37:17 228

转载 【转】CS231N课程笔记翻译

https://zhuanlan.zhihu.com/p/21560667?refer=intelligentunit

2017-10-27 15:55:56 193

转载 softmax regression求导

来自quora:https://www.quora.com/In-softmax-regression-how-can-one-derive-the-derivative-of-a-loss-function

2017-10-25 15:58:50 237

原创 梯度下降

损失函数L对于参数W的偏导数反映了参数W对损失函数的影响。偏导数为正意味其对损失函数L有正影响,即可以通过减小W来减小L,反之亦然。这就是为什么进行参数更新时,要不断地减去正影响,加上负影响。

2017-10-25 10:12:00 144

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除