- 博客(6)
- 收藏
- 关注
原创 CS231N lecture7 notes
- convolutional layer第一个卷积层重构了x,x,3的图像为y,y,z, 再把yyzpadding 保持图片的空间大小不变,否则会越变越小。filter的个数,padding(一般用0)是超参数。PPT里面有个summary。有时候会做 1x1的卷积:因为这时是在depth的方向上做卷积,所以这时候仍然是有意义的。有同学问到为什么滤波器边长总是odd:一般
2017-10-30 15:24:12 263
转载 231N Lec6 课程笔记
转自http://m.blog.csdn.net/fffupeng/article/details/73440929momentum update理解:在某个方向上震荡较大的时候,momentum会进行抵消,震荡较小时,momentum update会进行增加。可以自己进行一两个iteration进行推到。
2017-10-28 16:37:17 228
转载 【转】CS231N课程笔记翻译
https://zhuanlan.zhihu.com/p/21560667?refer=intelligentunit
2017-10-27 15:55:56 193
转载 softmax regression求导
来自quora:https://www.quora.com/In-softmax-regression-how-can-one-derive-the-derivative-of-a-loss-function
2017-10-25 15:58:50 237
原创 梯度下降
损失函数L对于参数W的偏导数反映了参数W对损失函数的影响。偏导数为正意味其对损失函数L有正影响,即可以通过减小W来减小L,反之亦然。这就是为什么进行参数更新时,要不断地减去正影响,加上负影响。
2017-10-25 10:12:00 144
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人