- convolutional layer
第一个卷积层重构了x,x,3的图像为y,y,z, 再把yyz
padding 保持图片的空间大小不变,否则会越变越小。
filter的个数,padding(一般用0)是超参数。
PPT里面有个summary。
有时候会做 1x1的卷积:因为这时是在depth的方向上做卷积,所以这时候仍然是有意义的。
有同学问到为什么滤波器边长总是odd:一般最小的是3,因为有左右方向。
深度可以远远大于边长。
为什么padding 0:因为这是指考虑了输入数据,0不会对输出有贡献。
总是处理正方形图像的。
kernel and filter是相同的。
从神经元的角度理解conv layer: 一个activation map 中的一个点就相当于一个神经元,它的receptive field就是滤波器大小,对应着输入图片的中和滤波器同样大小的区域。并 且一个activation map里的神经元都有着相同的权重。 共享参数,local connectivity。多个filter都是以前两个特点进行的。不要全局链接,因为参数多。
- Pooling layer
在每个activation map里下采样,减小尺寸,
max pooling(common), average pooling
扔掉了空间信息
- FC Layer
就是一个神经元,计算结果就是。
AlexNET有些实现细节,dropout只在FC用。
卷积层反向传播的时候需要注意what?
每一conv层,Fc层都都有一个relu层。