- 博客(121)
- 资源 (2)
- 收藏
- 关注
原创 深度学习中6种loss函数Pytorch API调用示例
交叉熵 CrossEntropyLoss、负对数似然 NLLLoss、KL散度 KLDivLoss、信息熵 、二分类交叉熵 BCELoss、余弦相似度 CosineEmbeddingLoss
2024-08-01 17:36:03 285
原创 运行python可执行文件UnicodeEncodeError: ‘latin-1‘ codec can‘t encode characters in position 46-50错误解决
UnicodeEncodeError: 'latin-1' codec can't encode characters in position 46-50错误解决
2024-07-23 17:58:52 583
原创 python虚拟环境
在Python虚拟环境中执行PyInstaller相比于非虚拟环境具有更好的依赖项管理、打包过程控制、可移植性和兼容性以及安全性。因此,在实际项目开发中,推荐使用虚拟环境来生成可执行文件。
2024-07-23 17:16:23 299
原创 python实现excel数据自动统计
自动统计每组的指定列中每个唯一值出现的次数。根据指定的分组列对数据进行分组。将需要的统计结果保存在新的文件中。读取Excel文件中的数据。
2024-07-02 17:04:33 627
原创 创建makefile链接源文件和库生成可执行文件
这个错误信息是在链接阶段发生的,意味着链接器(ld)在尝试链接你的程序时遇到了问题。这表示链接器找到了名为 libNetworkRuntime900_CM7_GCC.a 的静态库文件,但是因为它与当前的目标系统不兼容(可能是架构不匹配,比如库是为32位系统编译的,而你的系统是64位的,或者库是为不同的处理器架构编译的),所以链接器决定跳过这个库。
2024-04-19 13:42:38 379
原创 git中如何在父仓库提交子仓库的修改
子仓库在父仓库中进行了修改,你需要按照以下步骤提交子仓库的修改:git push origin HEAD:refs/for/master 和 git push 的区别:
2023-10-24 16:36:44 806
原创 git仓库中增加子仓库
子模块是独立的 Git 仓库,所以在父仓库和子仓库中都可以进行独立的操作。当你在父仓库中提交子模块的引用时,其他人在克隆父仓库后需要运行特定命令来获取子模块的内容。在父仓库中,你需要提交子模块的引用(SHA 值)到父仓库,这样其他人克隆父仓库时可以获得正确的子模块内容。
2023-10-19 14:32:51 2409
原创 深度学习准确率提升之天花板分析
OCR文字识别流水线主要分为三个模块:文字检测->字符分割->字符识别人物识别流水线:图像预处理->人脸检测->眼睛分割->鼻子分割->嘴巴分割->逻辑回归分类
2023-07-04 11:30:26 1046
原创 谈谈TOP1的编程语言
近年来,编程语言的流行度日益增长,它们不仅受到其主要应用领域的发展影响,还受到其易用性和速度等自身特质的影响。在今年已发布的TIOBE6月榜单上,Python暂时排名第一,C和C++紧随其后。
2023-06-27 15:03:58 718
原创 “AI+算力”组合的潜力和机遇
随着人工智能技术的飞速发展,“AI+算力”的结合应用已成为科技行业的热点话题,甚至诞生出“AI+算力=最强龙头“的网络热门等式。这个结合不仅可以提高计算效率,还可以为各行各业带来更强大的数据处理和分析能力,从而推动创新和增长。在我看来,这个时下的热门组合具有巨大的潜力和机遇。
2023-06-27 14:49:11 612
原创 C语言实现经典数据结构代码---二叉树
二叉树是一种常见的树形数据结构,它由一组节点组成,每个节点最多有两个子节点。二叉树的实现可以使用节点结构体和递归来表示。
2023-06-27 14:37:49 691
原创 C语言实现经典数据结构代码---栈和队列
栈是一种常见的数据结构,它遵循“先进后出”的原则,即最后进入栈的元素最先被访问。栈的实现可以使用数组或链表来存储数据。队列是一种常见的数据结构,它遵循“先进先出”的原则,即最先进入队列的元素最先被访问。队列的实现可以使用数组或链表来存储数据。
2023-06-27 14:21:17 505
原创 C语言实现经典数据结构代码---链表
链表是一种常见的线性数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。链表中的节点可以在内存中不连续地分布,通过指针将它们串联起来。
2023-06-27 13:56:42 699
原创 关于静态库和动态库的操作
objdump -x命令会列出二进制文件的各种头部信息,包括文件类型、系统架构、入口地址、段表、符号表、动态符号表、重定位表等等。这样就可以将新的.o文件添加到原来的.so库文件中。需要注意的是,objdump -x命令只显示二进制文件的头部信息,如果需要查看更详细的反汇编信息,可以使用其他objdump命令,比如objdump -d命令。
2023-06-02 16:37:54 1733
原创 计算两幅图像的位移距离
首先对于每个像素(i, j),计算以(i, j)为中心的2H2W的矩形区域内图像1和图像2之间的差值之和,并对计算面积(400)以及对图像边界进行了一定的限制判断,然后将差值之和均值的最小值将其作为最佳匹配位置。最后,函数根据最佳匹配位置计算出图像2相对于图像1的平移量(dx,dy)和距离(distance)。
2023-06-02 10:48:25 1372
原创 CMAKE介绍和使用(Linux平台)
CMake是一个跨平台的安装(编译)工具,可以用简单的语句来描述所有平台的安装(编译过程)。假设工程代码是如下形式:CMakeLists.txt 可以写成如下的形式:CMakeLists.txt 的语法比较简单,由命令、注释和空格组成,其中命令是不区分大小写的。符号 后面的内容被认为是注释。命令由命令名称、小括号和参数组成,参数之间使用空格进行间隔。对于上面的 CMakeLists.txt 文件,依次出现了几个
2023-05-10 17:49:41 4826
原创 卷积神经网络中特征图大小计算公式总结
W:输入特征图的宽,H:输入特征图的高,K:卷积核宽和高,Ppadding(需要填充的0的个数),N:卷积核的个数,S:步长width_out:卷积后输出特征图的的宽,height_out:卷积后输出特征图的高。
2023-01-16 16:14:37 8797 3
原创 深度学习---确保每次训练结果一致的方法
神经网络特意用随机性来保证,能通过有效学习得到问题的近似函数。采用随机性的原因是:用它的机器学习算法,要比不用它的效果更好。在神经网络中,最常见的随机性包含以下几个地方:初始化的随机性,比如权值正则化的随机性,比如dropout层的随机性,比如词嵌入最优化的随机性,比如随机优化
2022-12-05 17:29:34 3737 2
原创 对抗生成网络(GAN)中的损失函数
L1损失函数又称为MAE(mean abs error),即平均绝对误差,也就是预测值和真实值之间差值的绝对值。 L2损失函数又称为MSE(mean square error),即平均平方误差,也就是预测值和真实值之间差值的平方。
2022-11-10 18:20:45 16521 11
原创 深度学习中的注意力机制模型ECANet
SENet采用的 降维操作 会对通道注意力的预测产生 负面影响,且获取依赖关系效率低且不必要 ;基于此,提出了一种针对CNN的高效通道注意力(ECA)模块,避免了降维,有效地实现了 跨通道交互 ;
2022-11-03 14:40:48 3028
原创 深度学习中的注意力机制模型及代码实现(SE Attention、CBAM Attention)
常用的注意力机制多为SE Attention和CBAM Attention。它们基本都可以当成一个简单的网络。例如SE注意力机制,它主要就是由两个全连接层组成,这就是一个简单的MLP模型,只是它的输出变了样。所以,在我们把注意力机制加入主干网络里时,所选注意力机制的复杂程度也是我们要考虑的一个方面,因为增加注意力机制,也变相的增加了我们网络的深度,大小。
2022-11-03 10:56:20 8840
原创 Python傅里叶变换与霍夫变换
傅里叶变换(简称FT),常用于数字信号处理,它的目的是将时间域上的信号转变为频率域上的信号。傅里叶定理指出“任何连续的周期信号都可以表示成(或无线逼近)一系列正弦信号的叠加”。基于傅里叶变换的高通滤波和低通滤波,详见python实现图像添加噪声、噪声处理、滤波器代码实现_L888666Q的博客-CSDN博客霍夫变换是一种特征提取(feature extraction),被广泛应用在图像分析。
2022-10-08 18:17:17 731
原创 Python图像锐化及边缘检测(Roberts、Prewitt、Sobel、Lapllacian、Canny、LOG)
图像锐化(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围像元之间的反差,因此也被称为边缘增强。
2022-10-08 16:27:15 11974 2
原创 Python图像增强之直方图均衡化(全局直方图均衡、局部直方图均衡)
直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。全局直方图均衡该方法主要优点是算法简单、速度块、可自动曾倩图像;缺点是对噪声敏感、细节信息容易丢失,在某些结果区域产生过增强的问题。局部直方图均衡该方法优点是局部自适应,可最大限度的增强图像细节;缺点是增强图像质量操控困难,会随之引入噪声。
2022-10-08 14:48:10 8962 2
原创 Python图像平滑滤波处理(均值滤波、方框滤波、高斯滤波、中值滤波、双边滤波)
图像平滑是指受传感器和大气等因素的影响,遥感图像上会出现某些亮度变化过大的区域,或出现一些亮点(也称噪声)。这种为了抑制噪声,使图像亮度趋于平缓的处理方法就是图像平滑。图像平滑实际上是低通滤波,平滑过程会导致图像边缘模糊化。
2022-10-08 13:53:41 7339 1
原创 python使用PIL库实现图像的读取和保存
PIL库支持图像存储、显示和处理,它能够处理几乎所有图片格式,可以完成对图像的缩放、剪裁、叠加以及向图像添加线条、图像和文字等操作。
2022-10-04 10:00:00 7054
普通图片转换成卡通图片的模型文件
2022-08-04
keil5 Debug设置里没有J-LINK选项
2022-08-16
关于#深度学习知识蒸馏算法loss函数计算#的问题?
2022-08-12
TA创建的收藏夹 TA关注的收藏夹
TA关注的人