给定一副牌,每张牌上都写着一个整数。
此时,你需要选定一个数字 X,使我们可以将整副牌按下述规则分成 1 组或更多组:
每组都有 X 张牌。 组内所有的牌上都写着相同的整数。 仅当你可选的 X >= 2 时返回 true。
示例 1:
输入:[1,2,3,4,4,3,2,1]
输出:true
解释:可行的分组是 [1,1],[2,2],[3,3],[4,4]
示例 2:
输入:[1,1,1,2,2,2,3,3]
输出:false
解释:没有满足要求的分组。
示例 3:
输入:[1]
输出:false
解释:没有满足要求的分组。
示例 4:
输入:[1,1]
输出:true
解释:可行的分组是 [1,1]
示例 5:
输入:[1,1,2,2,2,2]
输出:true
解释:可行的分组是 [1,1],[2,2],[2,2]
提示:
1 <= deck.length <= 10000
0 <= deck[i] < 10000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/x-of-a-kind-in-a-deck-of-cards
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
一开始的思路是遍历数组计算每张卡牌的数量,然后再比较相邻的数量是否可以被除尽,但是这种情况下不能包含全部的测试用例,然后就想到了最大公约数,只要所有的卡牌的数量的最大公约数大于1即可,所以
class Solution {
public boolean hasGroupsSizeX(int[] deck) {
//计算每张卡牌的数量
Map<Integer,Integer> map = new HashMap();
for(int num:deck){
if(map.containsKey(num)){
map.put(num,map.get(num)+1);
}else{
map.put(num,1);
}
}
//遍历map中的值取相邻两个数的最大公约数
int x = -1;
for(int value:map.values()){
x=x==-1?value:gcd(x,value);
if(x==1){
return false;
}
}
return true;
}
//辗转相除法求最大公约数
private int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
}
然后因为题目中给定0 <= deck[i] < 10000,所以卡牌的数量可以使用数组来计算
class Solution {
public boolean hasGroupsSizeX(int[] deck) {
//计算每张卡牌的数量
int[] deckNum = new int[10000];
for(int num:deck){
deckNum[num]++;
}
//遍历取最大公约数
int x = -1;
for(int num:deckNum){
x=x==-1?num:gcd(x,num);
if(x==1){
return false;
}
}
return true;
}
//辗转相除法求最大公约数
private int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
}