机器学习
skyFish*
这个作者很懒,什么都没留下…
展开
-
机器学习:重新规划,基本面数据
2019.1.30emmm,昨天走到了爬数据这一步,这个阶段数据是为筛选行业做准备的,但是在爬之前,有几个问题需要考虑一下首先,我也不太懂金融,但是,考虑我如果买股票,作为个体,不可能时刻交易,每天交易都不能,每星期·····所以我考虑,我收益标准可能按月来,按季度,半年或者一年;但是问题是如果我自动化控制,就存在了每天交易的可能。问题是,我听说股市又能有人操纵,或者没有,maybe,那么如...原创 2019-01-31 16:50:26 · 352 阅读 · 0 评论 -
机器学习:数据处理
2019.1.28写这系列的博客,记录对机器学习的使用准用机器学习知识对股票STOCK进行分析由于本人对金融知识也不太了解,其实对机器学习也是新手,就先搞起来,在优化吧最终目的就是自动化股票交易,不关注数量,只关注买入卖出的时机,以及最大化收益暂时准备分一下几个步骤,类似机器学习流水线数据处理贯穿始终1.行业分类,目的筛选出优质行业(准备非监督,试试看,会自动分成什么样)2.股票筛...原创 2019-01-28 23:05:40 · 287 阅读 · 0 评论 -
机器学习:数据处理
ok,继续昨天的工作,昨天create engine的参数百度了一波然后解决nonetype问题,发现是tushare那个api,gettickdata的问题,这个api得到的数据类型有问题,导致存不进数据库,ok换了个方法from sqlalchemy import create_engineimport tushare as tsdf=ts.get_hist_data(‘300274’...原创 2019-01-30 08:55:06 · 433 阅读 · 2 评论 -
机器学习:k-means聚类效果评估
接着上一回的工作,用kmeans聚类之后,感觉肘部法则有些问题,今天又看了一遍代码,发现fit()函数的参数输错了,应该输入归一化之后的X_norm今天查阅了各种同学的分享,太多了,就不给出链接了,对聚类算法的评估,我筛选了下面三种方法第一种SSE 样本距离最近的聚类中心的距离总和 (簇内误差平方和)只对单个族中的数据分析,族与族之间的关系没有涉及所以可能有一定的问题在sklearn...原创 2019-02-22 20:45:31 · 30881 阅读 · 2 评论 -
机器学习:kmeans可视化
接着上回的工作,对kmeans的结果进行可视化,搜索了一波,普遍认为 tsne 能够将高维数据降到低维(2,3维),这样可视化之后,就能观察发现该组数据是否可以聚类我这边,已经聚类过了,用tsne降维可视化一下参考了这位小伙伴的博客:https://blog.csdn.net/lbweiwan/article/details/82759670我稍稍调整了一些代码,可视化顺便把中心点加...原创 2019-02-25 22:14:24 · 8207 阅读 · 0 评论 -
机器学习:概念聚类kmeans
https://blog.csdn.net/a19990412/article/details/79302501?utm_source=blogxgwz6原创 2019-02-20 17:52:38 · 470 阅读 · 0 评论