机器学习:k-means聚类效果评估

接着上一回的工作,用kmeans聚类之后,感觉肘部法则有些问题,今天又看了一遍代码,发现fit()函数的参数输错了,应该输入归一化之后的X_norm

今天查阅了各种同学的分享,太多了,就不给出链接了,对聚类算法的评估,我筛选了下面三种方法

第一种
SSE 样本距离最近的聚类中心的距离总和 (簇内误差平方和)
只对单个族中的数据分析,族与族之间的关系没有涉及
所以可能有一定的问题
在sklearn中直接用km.inertia_就能得到

这是我使用之后的效果

#聚类

engine = create_engine('mysql+pymysql://root:123456@localhost:3306/stock?charset=utf8')
totalConcept = pd.read_sql_query(''' select * from totalConcept; ''' , engine)
totalConcept.drop(['index'],axis=1,inplace=True)


#分割数据
X, y = totalConcept.iloc[:, 1:].values, totalConcept.iloc[:, 0].values

from sklearn import preprocessing
#正则化
min_max_scaler = preprocessing.MinMaxScaler()
X_norm = min_max_scaler.<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值