使用LSTM算法的多特征风电功率缺失数据补全程序,基于LSTM的风电数据缺失修复程序:多特征补全,自定义序列长度和缺失率,使用Python编程

基于LSTM的风电功率缺失数据补全/缺失数据修复
编程语言:Python
风电数据在采集过程中可能会有缺失,需要对数据进行补全。
该程序考虑了风速,压力,密度等多个特征,能够完美地补全缺失数据。
可调节序列长度,可调节缺失率,可以换成自己的数据。

ID:16550674290908953

发电机转子


随着风电发电技术的快速发展,风电数据的采集和分析变得越来越重要。由于风电数据的采集过程中可能会出现各种原因导致的数据缺失,这对于风电发电系统的运行和维护都带来了一定的挑战。因此,本文将介绍一种基于长短时记忆神经网络(LSTM)的风电功率缺失数据补全方法。

首先,本方法基于编程语言Python开发,使用LSTM模型来补全风电功率缺失数据。通过考虑风速、压力、密度等多个特征,我们能够更准确地还原缺失数据,从而提高数据的完整性和可靠性。同时,我们还可根据实际需求调节序列长度和缺失率,以适应不同的数据情况。

在具体实现过程中,我们首先需要进行数据预处理。将原始数据按照一定的时间序列进行划分,并提取出风速、压力、密度等特征作为输入变量。接下来,我们使用LSTM模型对缺失的功率数据进行预测和补全。LSTM模型是一种特殊的循环神经网络,能够学习和记忆长期依赖关系,具有较强的时间序列建模能力。

在LSTM模型的训练过程中,我们将已有的完整数据和部分缺失的数据作为训练集,通过反向传播算法来优化模型参数。在训练过程中,我们可以使用交叉验证等技术来评估模型的性能,并选择合适的模型参数和超参数。在训练完成后,我们可以使用训练好的模型来对缺失数据进行预测和补全。

实验结果表明,基于LSTM的风电功率缺失数据补全方法能够有效地还原缺失数据。与其他常见的数据插值方法相比,本方法在提高数据完整性的同时,还能更准确地反映风电发电系统的实际运行情况。此外,本方法还具有较好的灵活性,可以根据实际需求进行调节和优化。

总之,本文介绍了一种基于LSTM的风电功率缺失数据补全方法。通过考虑风速、压力、密度等多个特征,我们能够更准确地还原缺失数据,提高数据的完整性和可靠性。该方法使用Python编程语言开发,具有较好的灵活性和适应性。实验结果表明,该方法在风电数据补全方面具有良好的效果,能够为风电发电系统的运行和维护提供重要支持。

相关的代码,程序地址如下:http://wekup.cn/674290908953.html

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要对数据进行预处理。以风电预测为例,我们需要将历史数据划分为训练集和测试集,然后将其转化为序列数据,每个序列包括前一天的功数据和气象数据。同时,我们需要将功数据进行归一化处理。 接下来,我们使用LSTM模型对序列数据进行建模,并将其训练。 ```python import numpy as np import pandas as pd from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM, Dropout # 读取数据 data = pd.read_csv('data.csv') data = data.dropna() # 划分训练集和测试集 train_size = int(len(data) * 0.8) train_data = data[:train_size] test_data = data[train_size:] # 归一化处理 max_power = train_data['power'].max() min_power = train_data['power'].min() train_data['power'] = (train_data['power'] - min_power) / (max_power - min_power) test_data['power'] = (test_data['power'] - min_power) / (max_power - min_power) # 将序列数据转化为二维数组 def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), :] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 7 train_X, train_Y = create_dataset(train_data[['power', 'temperature', 'humidity']].values, look_back) test_X, test_Y = create_dataset(test_data[['power', 'temperature', 'humidity']].values, look_back) # LSTM模型 model = Sequential() model.add(LSTM(64, input_shape=(look_back, 3), return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(32, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(train_X, train_Y, epochs=50, batch_size=16, verbose=2) ``` 接下来,我们使用XGBoost模型对气象数据进行建模,并将其训练。 ```python import xgboost as xgb # XGBoost模型 train_X = train_data[['temperature', 'humidity']].values train_Y = train_data['power'].values test_X = test_data[['temperature', 'humidity']].values test_Y = test_data['power'].values xgb_model = xgb.XGBRegressor(n_estimators=100, max_depth=3, learning_rate=0.1) xgb_model.fit(train_X, train_Y) ``` 最后,我们将LSTM和XGBoost模型的预测结果进行组合,得到最终的预测结果。 ```python # 组合预测 lstm_pred = model.predict(test_X) xgb_pred = xgb_model.predict(test_X[:, 1:]) test_Y = test_Y.reshape(-1, 1) pred_Y = lstm_pred * (max_power - min_power) + min_power + xgb_pred test_Y = test_Y * (max_power - min_power) + min_power # 评估模型 from sklearn.metrics import r2_score, mean_squared_error print('R2 score:', r2_score(test_Y, pred_Y)) print('MSE:', mean_squared_error(test_Y, pred_Y)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值